Sulfur-doped, reduced graphene oxide nanoribbons for sodium-ion batteries

被引:23
作者
Yun, Young Soo [1 ]
Jin, Hyoung-Joon [2 ]
机构
[1] Kangwon Natl Univ, Dept Chem Engn, Samcheok 245711, South Korea
[2] Inha Univ, Dept Polymer Sci & Engn, Incheon 402751, South Korea
基金
新加坡国家研究基金会;
关键词
Graphene nanoribbon; Sulfur doping; Na-ion battery; Anode; ANODE MATERIALS; CARBON NANOTUBES; LITHIUM STORAGE; RATE CAPABILITY; NANOSHEETS; STABILITY; BOTTOM;
D O I
10.1016/j.matlet.2017.04.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study focused on the effects of sulfur doping on the properties of thermally reduced graphene oxide nanoribbons (rGONRs) and their usage as anodes in Na-ion batteries. Sulfur-doped rGONRs (S-rGONRs) were fabricated by unzipping carbon nanotubes and thermally treating them with elemental sulfur. The prepared S-rGONRs showed a higher reversible capacity of 395 mAh g(-1) than rGONRs, which have a capacity of 257 mAh g(-1). In addition, they exhibited high reversibility, a high rate capability of 20 A g(-1), and stable cyclic performance for over 4000 cycles. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 109
页数:4
相关论文
共 18 条
[1]   Enhanced Electrochemical Lithium Storage by Graphene Nanoribbons [J].
Bhardwaj, Tarun ;
Antic, Aleks ;
Pavan, Barbara ;
Barone, Veronica ;
Fahlman, Bradley D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (36) :12556-12558
[2]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[3]   Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J].
Kosynkin, Dmitry V. ;
Higginbotham, Amanda L. ;
Sinitskii, Alexander ;
Lomeda, Jay R. ;
Dimiev, Ayrat ;
Price, B. Katherine ;
Tour, James M. .
NATURE, 2009, 458 (7240) :872-U5
[4]   Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries [J].
Li, Dongdong ;
Zhang, Lei ;
Chen, Hongbin ;
Wang, Jun ;
Ding, Liang-Xin ;
Wang, Suqing ;
Ashman, Peter J. ;
Wang, Haihui .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (22) :8630-8635
[5]   Nitrogen-doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability [J].
Liu, Huan ;
Jia, Mengqiu ;
Cao, Bin ;
Chen, Renjie ;
Lv, Xinying ;
Tang, Renjie ;
Wu, Feng ;
Xu, Bin .
JOURNAL OF POWER SOURCES, 2016, 319 :195-201
[6]   Nitrogen-doped graphene nanoribbons for high-performance lithium ion batteries [J].
Liu, Yang ;
Wang, Xuzhen ;
Dong, Yanfeng ;
Wang, Zhiyu ;
Zhao, Zongbin ;
Qiu, Jieshan .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (40) :16832-16835
[7]   Feasibility of Lithium Storage on Graphene and Its Derivatives [J].
Liu, Yuanyue ;
Artyukhov, Vasilii I. ;
Liu, Mingjie ;
Harutyunyan, Ayetik R. ;
Yakobson, Boris I. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (10) :1737-1742
[8]   Nanoelectronics from the bottom up [J].
Lu, Wei ;
Lieber, CharLes M. .
NATURE MATERIALS, 2007, 6 (11) :841-850
[9]   Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries [J].
Luo, Xu-Feng ;
Yang, Cheng-Hsien ;
Peng, You-Yu ;
Pu, Nen-Wen ;
Ger, Ming-Der ;
Hsieh, Chien-Te ;
Chang, Jeng-Kuei .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (19) :10320-10326
[10]   Nanoionics: ion transport and electrochemical storage in confined systems [J].
Maier, J .
NATURE MATERIALS, 2005, 4 (11) :805-815