Symmetry and multiplicity for nonlinear elliptic differential equations with boundary blow-up

被引:48
作者
McKenna, PJ [1 ]
Reichel, W [1 ]
Walter, W [1 ]
机构
[1] UNIV KARLSRUHE,INST MATH 1,D-76128 KARLSRUHE,GERMANY
关键词
elliptic equations; p-Laplacian; boundary blow-up; radial symmetry;
D O I
10.1016/S0362-546X(97)82870-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1213 / 1225
页数:13
相关论文
共 16 条
[1]   LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS - EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR [J].
BANDLE, C ;
MARCUS, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :9-24
[2]  
Bandle C., COMMUNICATION
[3]  
BIERBERBACH I, 1916, MATH ANNLN, V77, P173
[4]   EXPLOSIVE SOLUTIONS OF QUASI-LINEAR ELLIPTIC-EQUATIONS - EXISTENCE AND UNIQUENESS [J].
DIAZ, G ;
LETELIER, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (02) :97-125
[5]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[6]   ON SOLUTIONS OF DELTA-U= F(U) [J].
KELLER, JB .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1957, 10 (04) :503-510
[7]  
KONDRATEV VA, 1990, DIFF EQUAT+, V26, P345
[8]   NONLINEAR ELLIPTIC-EQUATIONS WITH SINGULAR BOUNDARY-CONDITIONS AND STOCHASTIC-CONTROL WITH STATE CONSTRAINTS .1. THE MODEL PROBLEM [J].
LASRY, JM ;
LIONS, PL .
MATHEMATISCHE ANNALEN, 1989, 283 (04) :583-630
[9]  
Lazer A.C., 1994, Differ. Integral Equ., V7, P1001
[10]   ON A PROBLEM OF BIEBERBACH AND RADEMACHER [J].
LAZER, AC ;
MCKENNA, PJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 21 (05) :327-335