Nonlocal energy density functionals for pairing and beyond-mean-field calculations

被引:24
作者
Bennaceur, K. [1 ,2 ,3 ]
Idini, A. [2 ,4 ]
Dobaczewski, J. [2 ,3 ,5 ,6 ]
Dobaczewski, P. [7 ]
Kortelainen, M. [2 ,3 ]
Raimondi, F. [2 ,4 ]
机构
[1] Univ Lyon 1, Univ Lyon, CNRS, IN2P3,IPNL, F-69622 Villeurbanne, France
[2] Univ Jyvaskyla, Dept Phys, POB 35 YFL, FI-40014 Jyvaskyla, Finland
[3] Univ Helsinki, Helsinki Inst Phys, POB 64, FIN-00014 Helsinki, Finland
[4] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England
[5] Univ York, Dept Phys, York YO10 5DD, North Yorkshire, England
[6] Warsaw Univ, Fac Phys, Inst Theoret Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
[7] ul Obozowa 85 m 5, PL-01425 Warsaw, Poland
基金
芬兰科学院;
关键词
energy density functionals; regularized pseudopotentials; nuclear pairing; EQUATION; NUCLEI; FORCES;
D O I
10.1088/1361-6471/aa5fd7
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We propose to use two-body regularized finite-range pseudopotential to generate nuclear energy density functional (EDF) in both particle-hole and particle-particle channels, which makes it free from self-interaction and selfpairing, and also free from singularities when used beyond mean field. We derive a sequence of pseudopotentials regularized up to next-to-leading order and next-to-next-to-leading order, which fairly well describe infinite-nuclearmatter properties and finite open-shell paired and/or deformed nuclei. Since pure two-body pseudopotentials cannot generate sufficiently large effective mass, the obtained solutions constitute a preliminary step towards future implementations, which will include, e.g., EDF terms generated by three-body pseudopotentials.
引用
收藏
页数:22
相关论文
共 27 条
[21]   Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (VII) HFODD (v2.49t): A new version of the program [J].
Schunck, N. ;
Dobaczewski, J. ;
McDonnell, J. ;
Satula, W. ;
Sheikh, J. A. ;
Staszczak, A. ;
Stoitsov, M. ;
Toivanen, P. .
COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (01) :166-192
[22]  
Schunck N, 2017, COMPUT PHYS CO UNPUB
[23]  
SCHWIERZ N, 2007, ARXIV07093525
[24]  
Skyrme T H R, 1957, P REH C NUCL STRUCT, P20
[25]   THE NUCLEAR SURFACE [J].
SKYRME, THR .
PHILOSOPHICAL MAGAZINE, 1956, 1 (11) :1043-1054
[26]   THE EFFECTIVE NUCLEAR POTENTIAL [J].
SKYRME, THR .
NUCLEAR PHYSICS, 1959, 9 (04) :615-634
[27]   Polarization corrections to single-particle energies studied within the energy-density-functional and quasiparticle random-phase approximation approaches [J].
Tarpanov, D. ;
Toivanen, J. ;
Dobaczewski, J. ;
Carlsson, B. G. .
PHYSICAL REVIEW C, 2014, 89 (01)