Synthesis of a Neutral Mixed-Valence Diferrocenyl Carborane for Molecular Quantum-Dot Cellular Automata Applications

被引:47
作者
Christie, John A. [1 ]
Forrest, Ryan P. [1 ]
Corcelli, Steven A. [1 ]
Wasio, Natalie A. [1 ]
Quardokus, Rebecca C. [1 ]
Brown, Ryan [1 ]
Kandel, S. Alex [1 ]
Lu, Yuhui [3 ]
Lent, Craig S. [2 ]
Henderson, Kenneth W. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
[3] Coll Holy Cross, Dept Chem, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
carboranes; mixed-valence compounds; QCA; STM; zwitterions; DENSITY-FUNCTIONAL THEORY; ELECTRON-TRANSFER; COMPLEXES; CRYSTAL; SYSTEMS; ZWITTERIONS;
D O I
10.1002/anie.201507688
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The preparation of 7-Fc(+)-8-Fc-7,8-nido-[C2B9H10](-) (Fc(+)FcC(2)B(9)) demonstrates the successful incorporation of a carborane cage as an internal counteranion bridging between ferrocene and ferrocenium units. This neutral mixed-valence Fe-II/Fe-III complex overcomes the proximal electronic bias imposed by external counterions, a practical limitation in the use of molecular switches. A combination of UV/Vis-NIR spectroscopic and TD-DFT computational studies indicate that electron transfer within Fc(+)FcC(2)B(9)(-) is achieved through a bridge-mediated mechanism. This electronic framework therefore provides the possibility of an all-neutral null state, a key requirement for the implementation of quantum-dot cellular automata (QCA) molecular computing. The adhesion, ordering, and characterization of Fc(+)FcC(2)B(9)(-) on Au(111) has been observed by scanning tunneling microscopy.
引用
收藏
页码:15448 / 15451
页数:4
相关论文
共 50 条
  • [31] Clocked molecular quantum-dot cellular automata circuits tolerate unwanted external electric fields
    Cong, Peizhong
    Blair, Enrique P.
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (23)
  • [32] Geometric greedy router in Quantum-dot Cellular Automata
    Leroy Vieira, Luiz Guilherme
    Menezes Vieira, Luiz Filipe
    Menezes Vieira, Marcos Augusto
    Vilela Neto, Omar Paranaiba
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2021, 128
  • [33] Design of sequential circuits by quantum-dot cellular automata
    Huang, J.
    Momenzadeh, M.
    Lombardi, F.
    MICROELECTRONICS JOURNAL, 2007, 38 (4-5) : 525 - 537
  • [34] A serial memory by Quantum-dot Cellular Automata (QCA)
    Vankamamidi, Vamsi
    Ottavi, Marco
    Lombardi, Fabrizio
    IEEE TRANSACTIONS ON COMPUTERS, 2008, 57 (05) : 606 - 618
  • [35] IMAGE MASKING USING QUANTUM-DOT CELLULAR AUTOMATA
    Debnath, Bikash
    Das, Jadav Chandra
    De, Debashis
    Ghosh, Timam
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON DEVICES, CIRCUITS AND SYSTEMS (ICDCS) 2016, 2016, : 231 - 235
  • [36] Digital signature technique with quantum-dot cellular automata
    Kundu, Arpita
    Debnath, Bikash
    Das, Jadav Chandra
    De, Debashis
    IET QUANTUM COMMUNICATION, 2022, 3 (03): : 164 - 173
  • [37] Field-induced electron localization: Molecular quantum-dot cellular automata and the relevance of Robin-Day classification
    Lu, Yuhui
    Lent, Craig S.
    CHEMICAL PHYSICS LETTERS, 2015, 633 : 52 - 57
  • [38] High-speed metallic quantum-dot cellular automata
    Liu, M
    Lent, CS
    2003 THIRD IEEE CONFERENCE ON NANOTECHNOLOGY, VOLS ONE AND TWO, PROCEEDINGS, 2003, : 465 - 468
  • [39] Implementation of the new SCV method in quantum-dot cellular automata
    Yu, Chen
    Wang, Lei
    Xie, Guangjun
    IET CIRCUITS DEVICES & SYSTEMS, 2020, 14 (05) : 594 - 599
  • [40] Signal Energy in Quantum-Dot Cellular Automata Bit Packets
    Blair, Enrique Pacis
    Liu, Mo
    Lent, Craig S.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2011, 8 (06) : 972 - 982