Synthesis of a Neutral Mixed-Valence Diferrocenyl Carborane for Molecular Quantum-Dot Cellular Automata Applications

被引:47
作者
Christie, John A. [1 ]
Forrest, Ryan P. [1 ]
Corcelli, Steven A. [1 ]
Wasio, Natalie A. [1 ]
Quardokus, Rebecca C. [1 ]
Brown, Ryan [1 ]
Kandel, S. Alex [1 ]
Lu, Yuhui [3 ]
Lent, Craig S. [2 ]
Henderson, Kenneth W. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
[3] Coll Holy Cross, Dept Chem, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
carboranes; mixed-valence compounds; QCA; STM; zwitterions; DENSITY-FUNCTIONAL THEORY; ELECTRON-TRANSFER; COMPLEXES; CRYSTAL; SYSTEMS; ZWITTERIONS;
D O I
10.1002/anie.201507688
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The preparation of 7-Fc(+)-8-Fc-7,8-nido-[C2B9H10](-) (Fc(+)FcC(2)B(9)) demonstrates the successful incorporation of a carborane cage as an internal counteranion bridging between ferrocene and ferrocenium units. This neutral mixed-valence Fe-II/Fe-III complex overcomes the proximal electronic bias imposed by external counterions, a practical limitation in the use of molecular switches. A combination of UV/Vis-NIR spectroscopic and TD-DFT computational studies indicate that electron transfer within Fc(+)FcC(2)B(9)(-) is achieved through a bridge-mediated mechanism. This electronic framework therefore provides the possibility of an all-neutral null state, a key requirement for the implementation of quantum-dot cellular automata (QCA) molecular computing. The adhesion, ordering, and characterization of Fc(+)FcC(2)B(9)(-) on Au(111) has been observed by scanning tunneling microscopy.
引用
收藏
页码:15448 / 15451
页数:4
相关论文
共 50 条
  • [21] Quasi-classical modeling of molecular quantum-dot cellular automata multidriver gates
    Rahimi, Ehsan
    Nejad, Shahram Mohammad
    NANOSCALE RESEARCH LETTERS, 2012, 7
  • [22] A Theoretical Procedure Based on Classical Electrostatics and Density Functional Theory for Screening Non-Square-Shaped Mixed-Valence Complexes for Logic Gates in Molecular Quantum-Dot Cellular Automata
    Tokunaga, Ken
    Odate, Fumiya
    Asami, Daiya
    Tahara, Keishiro
    Sato, Mitsunobu
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2021, 94 (02) : 397 - 403
  • [23] Counterion-free molecular quantum-dot cellular automata using mixed valence zwitterions - A double-dot derivative of the [closo-1-CB9H10]- cluster
    Lu, Yuhui
    Lent, Craig S.
    CHEMICAL PHYSICS LETTERS, 2013, 582 : 86 - 89
  • [24] Ab initio studies of counterion effects in molecular quantum-dot cellular automata
    Liza, Nishattasnim
    Coe, Daniel J.
    Lu, Yuhui
    Blair, Enrique P.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2024, 45 (07) : 392 - 404
  • [25] Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata
    Blair, Enrique P.
    Yost, Eric
    Lent, Craig S.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2010, 9 (01) : 49 - 55
  • [26] Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata
    Enrique P. Blair
    Eric Yost
    Craig S. Lent
    Journal of Computational Electronics, 2010, 9 : 49 - 55
  • [27] Kink-solitons in quantum-dot cellular automata
    Nakagawa, S
    Eto, N
    Kawamura, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2001, 40 (2A): : 538 - 545
  • [28] Robust Electric-Field Input Circuits for Clocked Molecular Quantum-Dot Cellular Automata
    Cong, Peizhong
    Blair, Enrique P.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2022, 21 : 424 - 433
  • [29] Electric-Field Inputs for Molecular Quantum-Dot Cellular Automata Circuits
    Blair, Enrique
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2019, 18 : 453 - 460
  • [30] Neuromorphic Computation using Quantum-dot Cellular Automata
    Blair, Enrique P.
    Koziol, Scott
    2017 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2017, : 328 - 331