Exploiting spatio-temporal data for the multiobjective optimization of cellular automata models

被引:0
|
作者
Trunfio, Giuseppe A. [1 ]
机构
[1] Univ Sassari, DAP, I-07041 Alghero, SS, Italy
来源
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2006, PROCEEDINGS | 2006年 / 4224卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increased availability of remotely sensed spatio-temporal data offers the chance to improve the reliability of an important class of Cellular Automata (CA) models used for the simulation of real complex systems. To this end, this paper proposes a multiobjective approach, based on a genetic algorithm, which can present some significant advantages if compared with standard single-objective optimizations. The method exploits the available temporal sequences of spatial data in order to produce CAs which are non-dominated with respect to multiple objectives. The latter represent, in different metrics, the level of agreement between the simulated and real spatio-temporal processes. The set of non-dominated CAs proves to be a valuable source of information about potentialities and limits of a specific CA model structure.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 50 条
  • [41] Learning Localized Spatio-Temporal Models From Streaming Data
    Osama, Muhammad
    Zachariah, Dave
    Schon, Thomas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [42] Spatio-temporal Data Analysis for Development of Microclimate Prediction Models
    Hong, Tageui
    Heo, Yeonsook
    PROCEEDINGS OF BUILDING SIMULATION 2021: 17TH CONFERENCE OF IBPSA, 2022, 17 : 878 - 885
  • [43] VAR models for spatio-temporal structures: An application to environmental data
    Lamberti, A
    Naccarato, A
    New Developments in Classification and Data Analysis, 2005, : 243 - 250
  • [44] Choosing suitable linear coregionalization models for spatio-temporal data
    S. De Iaco
    M. Palma
    D. Posa
    Stochastic Environmental Research and Risk Assessment, 2019, 33 : 1419 - 1434
  • [45] Statistics for Spatio-Temporal Data
    Mills, Jeff
    JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [46] Predictive spatio-temporal models for spatially sparse environmental data
    de Luna, X
    Genton, MG
    STATISTICA SINICA, 2005, 15 (02) : 547 - 568
  • [47] Spatio-temporal models and languages:: An approach based on data types
    Güting, RH
    Böhlen, MH
    Erwig, M
    Jensen, CS
    Lorentzos, N
    Nardelli, E
    Schneider, M
    Viqueira, JRR
    SPATIO-TEMPORAL DATABASES: THE CHROCHRONOS APPROACH, 2003, 2520 : 117 - 176
  • [48] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [49] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    MATHEMATICS, 2022, 10 (10)
  • [50] Spatio-temporal models and languages: An approach based on data types
    Güting, Ralf Hartmut
    Böhlen, Michael H.
    Erwig, Martin
    Jensen, Christian S.
    Lorentzos, Nikos
    Nardelli, Enrico
    Schneider, Markus
    Viqueira, Jose R.R.
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2003, 2520 : 117 - 176