Exploiting spatio-temporal data for the multiobjective optimization of cellular automata models

被引:0
|
作者
Trunfio, Giuseppe A. [1 ]
机构
[1] Univ Sassari, DAP, I-07041 Alghero, SS, Italy
来源
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2006, PROCEEDINGS | 2006年 / 4224卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increased availability of remotely sensed spatio-temporal data offers the chance to improve the reliability of an important class of Cellular Automata (CA) models used for the simulation of real complex systems. To this end, this paper proposes a multiobjective approach, based on a genetic algorithm, which can present some significant advantages if compared with standard single-objective optimizations. The method exploits the available temporal sequences of spatial data in order to produce CAs which are non-dominated with respect to multiple objectives. The latter represent, in different metrics, the level of agreement between the simulated and real spatio-temporal processes. The set of non-dominated CAs proves to be a valuable source of information about potentialities and limits of a specific CA model structure.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 50 条
  • [21] Spatio-Temporal Cellular Automata-Based Filtering for Image Sequence Denoising
    Priego, Blanca
    Prieto, Abraham
    Duro, Richard J.
    Chanussot, Jocelyn
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2362 - 2369
  • [22] Adaptive spatio-temporal models for satellite ecological data
    Carlo Grillenzoni
    Journal of Agricultural, Biological, and Environmental Statistics, 2004, 9 : 158 - 180
  • [23] Asymptotic models and inference for extremes of spatio-temporal data
    Turkman, Kamil Feridun
    Turkman, M. A. Amaral
    Pereira, J. M.
    EXTREMES, 2010, 13 (04) : 375 - 397
  • [24] Adaptive spatio-temporal models for satellite ecological data
    Grillenzoni, C
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2004, 9 (02) : 158 - 180
  • [25] Factor copula models for data with spatio-temporal dependence
    Krupskii, Pavel
    Genton, Marc G.
    SPATIAL STATISTICS, 2017, 22 : 180 - 195
  • [26] Inference for the Analysis of Ordinal Data with Spatio-Temporal Models
    Peraza-Garay, F.
    Marquez-Urbina, J. U.
    Gonzalez-Farias, G.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2020, 16 (02): : 192 - 225
  • [27] Spatio-temporal Topic Models for Check-in Data
    Liu, Yu
    Ester, Martin
    Hu, Bo
    Cheung, David W.
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 889 - 894
  • [28] Adapting data models for the design of spatio-temporal databases
    Bedard, Y
    Caron, C
    Maamar, Z
    Moulin, B
    Valliere, D
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 1996, 20 (01) : 19 - 41
  • [29] Asymptotic models and inference for extremes of spatio-temporal data
    Kamil Feridun Turkman
    M. A. Amaral Turkman
    J. M. Pereira
    Extremes, 2010, 13 : 375 - 397
  • [30] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282