Snow distribution and melt modeling for Mittivakkat Glacier, Ammassalik Island, southeast Greenland

被引:63
作者
Mernild, Sebastian H.
Liston, Glen E.
Hasholt, Bent
Knudsen, Niels T.
机构
[1] Univ Copenhagen, Inst Geog, DK-1350 Copenhagen K, Denmark
[2] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
[3] Univ Copenhagen, Inst Geog, DK-1168 Copenhagen, Denmark
[4] Univ Aarhus, Dept Earth Sci, Aarhus, Denmark
关键词
D O I
10.1175/JHM522.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A physically based snow-evolution modeling system (SnowModel) that includes four submodels-the Micrometeorological Model (MicroMet), EnBal, SnowPack, and SnowTran-3D-was used to simulate five full-year evolutions of snow accumulation, distribution, sublimation, and surface melt on the Mittivakkat Glacier, in southeast Greenland. Model modifications were implemented and used 1) to adjust underestimated observed meteorological station solid precipitation until the model matched the observed Mittivakkat Glacier winter mass balance, and 2) to simulate glacier-ice melt after the winter snow accumulation had ablated. Meteorological observations from two meteorological stations were used as model inputs, and glaciological mass balance observations were used for model calibration and testing of solid precipitation observations. The modeled end-of-winter snow-water equivalent (w. eq.) accumulation increased with elevation from 200 to 700 m above sea level (ASL) in response to both elevation and topographic influences, and the simulated end-of-summer location of the glacier equilibrium line altitude was confirmed by glaciological observations and digital images. The modeled test-period-averaged annual mass balance was 150 mm w. eq. yr(-1), or similar to 15%, less than the observed. Approximately 12% of the precipitation was returned to the atmosphere by sublimation. Glacier-averaged mean annual modeled surface melt ranged from 1272 to 2221 mm w. eq. yr(-1), of which snowmelt contributed from 610 to 1040 mm w. eq. yr(-1). The surface-melt period started between mid-May and the beginning of June, and lasted until mid-September; there were as many as 120 melt days at the glacier terminus. The model simulated a Mittivakkat Glacier recession averaging -616 mm w. eq. yr(-1), almost equal to the observed -600 mm w. eq. yr(-1).
引用
收藏
页码:808 / 824
页数:17
相关论文
共 70 条
[1]   Correction of precipitation based on off-site weather information [J].
Allerup, P ;
Madsen, H ;
Vejen, F .
ATMOSPHERIC RESEARCH, 2000, 53 (04) :231-250
[2]  
Allerup P., 1998, NHP REP, V44, P1
[3]  
Allerup P, 2000, P NORD HYDR C UPPS S, P1
[4]  
Anderson E. A., 1976, 19 NOAA NWS
[5]  
[Anonymous], INT ASS HYDROLOGICAL
[6]  
Barnes S., 1964, J. Appl. Meteor., V3, P396, DOI [DOI 10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO
[7]  
2, 10.1175/1520-0450(1964)0032.0.CO
[8]  
2, DOI 10.1175/1520-0450(1964)0032.0.CO
[9]  
2]
[10]  
BARNES SL, 1973, NSSL62 NOAA ERL