Slow Continued Fractions and Permutative Representations of ON

被引:0
作者
Linden, Christopher [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61820 USA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2020年 / 63卷 / 04期
关键词
Cuntz algebra; continued fractions; permutatative representation; projective linear group; Mobius transformation; EVEN; ODD;
D O I
10.4153/S0008439519000821
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Representations of the Cuntz algebra O-N are constructed from interval dynamical systems associated with slow continued fraction algorithms introduced by Giovanni Panti. heir irreducible decomposition formulas are characterized by using the modular group action on real numbers, as a generalization of results by Kawamura, Hayashi, and Lascu. Furthermore, a certain symmetry of such an interval dynamical system is interpreted as a covariant representation of the C*-dynamical system of the "flip-flop" automorphism of O-2.
引用
收藏
页码:787 / 801
页数:15
相关论文
共 18 条