Mean-field approach in the multi-component gas of interacting particles applied to relativistic heavy-ion collisions

被引:29
作者
Anchishkin, D. [1 ,2 ,3 ]
Vovchenko, V. [2 ,3 ,4 ,5 ]
机构
[1] Bogolyubov Inst Theoret Phys, UA-03680 Kiev, Ukraine
[2] Taras Shevchenko Kiev Natl Univ, UA-03022 Kiev, Ukraine
[3] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany
[4] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany
[5] Goethe Univ Frankfurt, D-60325 Frankfurt, Germany
关键词
mean-field approach; excluded volume; hadron resonance gas; EQUATION-OF-STATE; THERMAL HADRON-PRODUCTION; EXCLUDED-VOLUME; NUCLEAR COLLISIONS; PHASE-TRANSITION; FREEZE-OUT; MODEL; MATTER; QCD; CONSISTENCY;
D O I
10.1088/0954-3899/42/10/105102
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A generalized mean-field approach for the thermodynamic description of relativistic single-and multi-component gas in the grand canonical ensemble is formulated. In the framework of the proposed approach, different phenomenological excluded-volume procedures are presented and compared to the existing ones. The mean-field approach is then used to effectively include hard-core repulsion in hadron-resonance gas model for description of chemical freeze-out in heavy-ion collisions. We calculate the collision energy dependence of several quantities for different values of hard-core hadron radius and for different excluded-volume procedures such as the van der Waals and Carnahan-Starling models. It is shown that a choice of the excluded-volume model becomes important for large particle densities. For large enough values of hadron radii (r greater than or similar to 0.9 fm) there can be a sizable difference between different excluded-volume procedures used to describe the chemical freeze-out in heavy-ion collisions. At the same time, for the smaller and more commonly used values of hard-core hadron radii (r less than or similar to 0.5 fm), the precision of the van der Waals excluded-volume procedure is shown to be sufficient.
引用
收藏
页数:27
相关论文
共 49 条
[31]  
Kittel Ch, 1970, THERMAL PHYS
[32]  
Kuni F M, 1981, STATISTICHESKAYA FIZ, P4
[33]   AN EQUATION OF STATE FOR DENSE RIGID SPHERE GASES [J].
MA, D ;
AHMADI, G .
JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (06) :3449-3450
[34]  
Mayer J E, 1977, STATISTICAL MECHANIC, P8
[35]   REVIEW OF PARTICLE PHYSICS Particle Data Group [J].
Olive, K. A. ;
Agashe, K. ;
Amsler, C. ;
Antonelli, M. ;
Arguin, J. -F. ;
Asner, D. M. ;
Baer, H. ;
Band, H. R. ;
Barnett, R. M. ;
Basaglia, T. ;
Bauer, C. W. ;
Beatty, J. J. ;
Belousov, V. I. ;
Beringer, J. ;
Bernardi, G. ;
Bethke, S. ;
Bichsel, H. ;
Biebel, O. ;
Blucher, E. ;
Blusk, S. ;
Brooijmans, G. ;
Buchmueller, O. ;
Burkert, V. ;
Bychkov, M. A. ;
Cahn, R. N. ;
Carena, M. ;
Ceccucci, A. ;
Cerri, A. ;
Chakraborty, D. ;
Chen, M. -C. ;
Chivukula, R. S. ;
Copic, K. ;
Cowan, G. ;
Dahl, O. ;
D'Ambrosio, G. ;
Damour, T. ;
de Florian, D. ;
de Gouvea, A. ;
DeGrand, T. ;
de Jong, P. ;
Dissertori, G. ;
Dobrescu, B. A. ;
Doser, M. ;
Drees, M. ;
Dreiner, H. K. ;
Edwards, D. A. ;
Eidelman, S. ;
Erler, J. ;
Ezhela, V. V. ;
Fetscher, W. .
CHINESE PHYSICS C, 2014, 38 (09)
[36]   EXCLUDED VOLUME EFFECT FOR THE NUCLEAR-MATTER EQUATION OF STATE [J].
RISCHKE, DH ;
GORENSTEIN, MI ;
STOCKER, H ;
GREINER, W .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1991, 51 (03) :485-489
[37]   Recent progress in quantum hadrodynamics [J].
Serot, BD ;
Walecka, JD .
INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 1997, 6 (04) :515-631
[38]   Confronting LHC data with the statistical hadronization model [J].
Stachel, J. ;
Andronic, A. ;
Braun-Munzinger, P. ;
Redlich, K. .
14TH INTERNATIONAL CONFERENCE ON STRANGENESS IN QUARK MATTER (SQM2013), 2014, 509
[39]   An effective chiral hadron-quark equation of state [J].
Steinheimer, J. ;
Schramm, S. ;
Stoecker, H. .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2011, 38 (03)
[40]   Excluded volume in mean-field formalism and kaon condensation [J].
Tiwari, VK ;
Prasad, N ;
Singh, CP .
PHYSICAL REVIEW C, 1998, 58 (01) :439-446