Mean-field approach in the multi-component gas of interacting particles applied to relativistic heavy-ion collisions

被引:29
作者
Anchishkin, D. [1 ,2 ,3 ]
Vovchenko, V. [2 ,3 ,4 ,5 ]
机构
[1] Bogolyubov Inst Theoret Phys, UA-03680 Kiev, Ukraine
[2] Taras Shevchenko Kiev Natl Univ, UA-03022 Kiev, Ukraine
[3] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany
[4] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany
[5] Goethe Univ Frankfurt, D-60325 Frankfurt, Germany
关键词
mean-field approach; excluded volume; hadron resonance gas; EQUATION-OF-STATE; THERMAL HADRON-PRODUCTION; EXCLUDED-VOLUME; NUCLEAR COLLISIONS; PHASE-TRANSITION; FREEZE-OUT; MODEL; MATTER; QCD; CONSISTENCY;
D O I
10.1088/0954-3899/42/10/105102
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A generalized mean-field approach for the thermodynamic description of relativistic single-and multi-component gas in the grand canonical ensemble is formulated. In the framework of the proposed approach, different phenomenological excluded-volume procedures are presented and compared to the existing ones. The mean-field approach is then used to effectively include hard-core repulsion in hadron-resonance gas model for description of chemical freeze-out in heavy-ion collisions. We calculate the collision energy dependence of several quantities for different values of hard-core hadron radius and for different excluded-volume procedures such as the van der Waals and Carnahan-Starling models. It is shown that a choice of the excluded-volume model becomes important for large particle densities. For large enough values of hadron radii (r greater than or similar to 0.9 fm) there can be a sizable difference between different excluded-volume procedures used to describe the chemical freeze-out in heavy-ion collisions. At the same time, for the smaller and more commonly used values of hard-core hadron radii (r less than or similar to 0.5 fm), the precision of the van der Waals excluded-volume procedure is shown to be sufficient.
引用
收藏
页数:27
相关论文
共 49 条
[1]   GENERALIZATION OF MEAN-FIELD MODELS TO ACCOUNT FOR EFFECTS OF EXCLUDED-VOLUME [J].
ANCHISHKIN, D ;
SUHONEN, E .
NUCLEAR PHYSICS A, 1995, 586 (04) :734-754
[2]  
Anchishkin D. V., 1992, Soviet Physics - JETP, V75, P195
[3]  
ANCHISHKIN DV, 1992, ZH EKSP TEOR FIZ+, V102, P369
[4]   Hadron production in central nucleus-nucleus collisions at chemical freeze-out [J].
Andronic, A. ;
Braun-Munzinger, P. ;
Stachel, J. .
NUCLEAR PHYSICS A, 2006, 772 (3-4) :167-199
[5]   Thermal hadron production in relativistic nuclear collisions: The hadron mass spectrum, the horn, and the QCD phase transition [J].
Andronic, A. ;
Braun-Munzinger, P. ;
Stachel, J. .
PHYSICS LETTERS B, 2009, 673 (02) :142-145
[6]   Equation of state in (2+1)-flavor QCD [J].
Bazavov, A. ;
Bhattacharya, Tanmoy ;
DeTar, C. ;
Ding, H. -T. ;
Gottlieb, Steven ;
Gupta, Rajan ;
Hegde, P. ;
Heller, U. M. ;
Karsch, F. ;
Laermann, E. ;
Levkova, L. ;
Mukherjee, Swagato ;
Petreczky, P. ;
Schmidt, C. ;
Schroeder, C. ;
Soltz, R. A. ;
Soeldner, W. ;
Sugar, R. ;
Wagner, M. ;
Vranas, P. .
PHYSICAL REVIEW D, 2014, 90 (09)
[7]   Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions [J].
Becattini, F ;
Manninen, J ;
Gazdzicki, M .
PHYSICAL REVIEW C, 2006, 73 (04)
[8]   Chemical equilibrium study in nucleus-nucleus collisions at relativistic energies -: art. no. 024905 [J].
Becattini, F ;
Gazdzicki, M ;
Keränen, A ;
Manninen, J ;
Stock, R .
PHYSICAL REVIEW C, 2004, 69 (02) :249051-2490519
[9]   Features of particle multiplicities and strangeness production in central heavy ion collisions between 1.7A and 158A GeV/c -: art. no. 024901 [J].
Becattini, F ;
Cleymans, J ;
Keränen, A ;
Suhonen, E ;
Redlich, K .
PHYSICAL REVIEW C, 2001, 64 (02) :249011-249019
[10]   Hadron-resonance gas at freeze-out: Reminder on the importance of repulsive interactions [J].
Begun, V. V. ;
Gazdzicki, M. ;
Gorenstein, M. I. .
PHYSICAL REVIEW C, 2013, 88 (02)