Modeling and analysis of artificial neural networks applied in operations research

被引:0
|
作者
da Silva, IN [1 ]
de Souza, AN [1 ]
Bordon, ME [1 ]
机构
[1] UNESP, FE, DEE, Sch Engn,Dept Elect Engn, BR-17033360 Bauru, SP, Brazil
来源
MANUFACTURING, MODELING, MANAGEMENT AND CONTROL, PROCEEDINGS | 2001年
关键词
operations research; neural networks; linear programming; artificial intelligence; parameter optimization;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.
引用
收藏
页码:315 / 320
页数:6
相关论文
共 50 条
  • [41] Fuzzy logic, genetic algorithms, and artificial neural networks applied to cognitive radio networks: A review
    Alkhayyat, Ahmed
    Abedi, Firas
    Bagwari, Ashish
    Joshi, Pooja
    Jawad, Haider Mahmood
    Mahmood, Sarmad Nozad
    Yousif, Yousif K.
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2022, 18 (07)
  • [42] Numeric sensitivity analysis applied to feedforward neural networks
    J. J. Montaño
    A. Palmer
    Neural Computing & Applications, 2003, 12 : 119 - 125
  • [43] Numeric sensitivity analysis applied to feedforward neural networks
    Montaño, JJ
    Palmer, A
    NEURAL COMPUTING & APPLICATIONS, 2003, 12 (02) : 119 - 125
  • [44] The use of artificial neural networks in materials science based research
    Sha, W.
    Edwards, K. L.
    MATERIALS & DESIGN, 2007, 28 (06): : 1747 - 1752
  • [45] Mathematical modeling of drying kinetics of ground Açaí (Euterpe oleracea) kernel using artificial neural networks
    Mohamad A. Bannoud
    Beatriz P. Gomes
    Marcela C. de S. P. Abdalla
    Mariana V. Freire
    Kaciane Andreola
    Tiago D. Martins
    Carlos A. M. da Silva
    Luciane F. G. de Souza
    Matheus B. Braga
    Chemical Papers, 2024, 78 : 1033 - 1054
  • [46] Mathematical modeling of drying kinetics of ground Açaí (Euterpe oleracea) kernel using artificial neural networks
    Bannoud, Mohamad A.
    Gomes, Beatriz P.
    Abdalla, Marcela C. de S. P.
    Freire, Mariana V.
    Andreola, Kaciane
    Martins, Tiago D.
    da Silva, Carlos A. M.
    de Souza, Luciane F. G.
    Braga, Matheus B.
    CHEMICAL PAPERS, 2024, 78 (02) : 1033 - 1054
  • [47] Estimating Drilling Parameters for Diamond Bit Drilling Operations Using Artificial Neural Networks
    Akin, Serhat
    Karpuz, Celal
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2008, 8 (01) : 68 - 73
  • [48] NEURAL NETWORKS APPLIED IN ELECTROMAGNETIC INTERFERENCE PROBLEMS
    Micu, Dan D.
    Czumbil, Levente
    Christoforidis, Giorgios
    Simion, Emil
    REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2012, 57 (02): : 162 - 171
  • [49] Hostile Intent Identification by Movement Pattern Analysis: Using Artificial Neural Networks
    Biswas, Souham
    Nene, Manisha J.
    2014 INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (PDGC), 2014, : 439 - 444
  • [50] Artificial Neural Networks Application in Modal Analysis of Tires
    Kostial, P.
    Jancikova, Z.
    Bakosova, D.
    Valicek, J.
    Harnicarova, M.
    Spicka, I.
    MEASUREMENT SCIENCE REVIEW, 2013, 13 (05): : 273 - 278