Improving CRISPR Genome Editing by Engineering Guide RNAs

被引:72
作者
Moon, Su Bin [1 ,2 ]
Kim, Do Yon [1 ,2 ]
Ko, Jeong-Heon [1 ,2 ]
Kim, Jin-Soo [3 ,4 ,5 ]
Kim, Yong-Sam [1 ,2 ]
机构
[1] KRIBB, Genome Editing Res Ctr, Daejeon, South Korea
[2] Korea Univ Sci & Technol UST, KRIBB Sch Biosci, Daejeon, South Korea
[3] Ctr Genome Engn, Inst Basic Sci, Daejeon, South Korea
[4] Korea Univ Sci & Technol UST, IBS Sch, Daejeon, South Korea
[5] Seoul Natl Univ, Dept Chem, Seoul, South Korea
关键词
CHEMICAL-MODIFICATIONS; MAMMALIAN-CELLS; GENE KNOCKOUT; CAS9; DNA; SPECIFICITY; CPF1; ACTIVATION; BASE; ENDONUCLEASES;
D O I
10.1016/j.tibtech.2019.01.009
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR technology is a two-component gene editing system in which the effector protein induces genetic alterations with the aid of a gene targeting guide RNA. Guide RNA can be produced through chemical synthesis, in vitro transcription, or intracellular transcription. Guide RNAs can be engineered to have chemical modifications, alterations in the spacer length, sequence modifications, fusion of RNA or DNA components, and incorporation of deoxynucleotides. Engineered guide RNA can improve genome editing efficiency and target specificity, regulation of biological toxicity, sensitive and specific molecular imaging, multiplexing, and editing flexibility. Therefore, engineered guide RNA will enable more specific, efficient, and safe gene editing, ultimately improving the clinical benefits of gene therapy.
引用
收藏
页码:870 / 881
页数:12
相关论文
共 93 条
  • [41] Kiani S, 2015, NAT METHODS, V12, P1051, DOI [10.1038/NMETH.3580, 10.1038/nmeth.3580]
  • [42] Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells
    Kim, Daesik
    Kim, Jungeun
    Hur, Junho K.
    Been, Kyung Wook
    Yoon, Sun-heui
    Kim, Jin-Soo
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (08) : 863 - +
  • [43] CRISPR RNAs trigger innate immune responses in human cells
    Kim, Sojung
    Koo, Taeyoung
    Jee, Hyeon-Gun
    Cho, Hee-Yeon
    Lee, Gyeorae
    Lim, Dong-Gyun
    Shin, Hyoung Shik
    Kim, Jin-Soo
    [J]. GENOME RESEARCH, 2018, 28 (03) : 367 - 373
  • [44] Rescue of high-specificity Cas9 variants using sgRNAs with matched 5′ nucleotides
    Kim, Sojung
    Bae, Taegeun
    Hwang, Jaewoong
    Kim, Jin-Soo
    [J]. GENOME BIOLOGY, 2017, 18
  • [45] Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
    Kim, Sojung
    Kim, Daesik
    Cho, Seung Woo
    Kim, Jungeun
    Kim, Jin-Soo
    [J]. GENOME RESEARCH, 2014, 24 (06) : 1012 - 1019
  • [46] High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
    Kleinstiver, Benjamin P.
    Pattanayak, Vikram
    Prew, Michelle S.
    Tsai, Shengdar Q.
    Nguyen, Nhu T.
    Zheng, Zongli
    Joung, J. Keith
    [J]. NATURE, 2016, 529 (7587) : 490 - +
  • [47] Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
    Komor, Alexis C.
    Kim, Yongjoo B.
    Packer, Michael S.
    Zuris, John A.
    Liu, David R.
    [J]. NATURE, 2016, 533 (7603) : 420 - +
  • [48] The New State of the Art: Cas9 for Gene Activation and Repression
    La Russa, Marie F.
    Qi, Lei S.
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2015, 35 (22) : 3800 - 3809
  • [49] Lee J.W., 2018, NAT COMMUN, V9, P1
  • [50] Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering
    Lee, Kunwoo
    Mackley, Vanessa A.
    Rao, Anirudh
    Chong, Anthony T.
    Dewitt, Mark A.
    Corn, Jacob E.
    Murthy, Niren
    [J]. ELIFE, 2017, 6