Genome-wide identification of plant-upregulated genes of Erwinia chrysanthemi 3937 using a GFP-Based IVET leaf array

被引:69
作者
Yang, SH
Perna, NT
Cooksey, DA
Okinaka, Y
Lindow, SE
Ibekwe, AM
Keen, NT
Yang, CH
机构
[1] Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53211 USA
[2] Univ Calif Riverside, Dept Plant Pathol, Riverside, CA 92521 USA
[3] Univ Wisconsin, Dept Anim Hlth & Biomed Sci, Madison, WI 53706 USA
[4] Hiroshima Univ, Grad Sch Biosphere Sci, Higashihiroshima 7398528, Japan
[5] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[6] USDA ARS, George E Brown Jr Salin Lab, Riverside, CA 92507 USA
关键词
oxidative stress; phosphotransferase system; transport of oligogalacturonides; type III secretion system;
D O I
10.1094/MPMI.2004.17.9.999
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A green fluorescent protein-based in vivo expression technology leaf array was used to identify genes in Erwinia chrysanthemi 3937 that were specifically upregulated in plants compared with growth in a laboratory culture medium. Of 10,000 E. chrysanthemi 3937 clones, 61 were confirmed as plant upregulated. On the basis of sequence similarity, these were recognized with probable functions in metabolism (20%), information transfer (15%), regulation (11%), transport (11%), cell processes (11%), and transposases (2%); the function for the remainder (30%) is unknown. Upregulated genes included transcriptional regulators, iron uptake systems, chemotaxis components, transporters, stress response genes, and several already known or new putative-virulence factors. Ten independent mutants were constructed by insertions in these plant upregulated genes and flanking genes. Two different virulence assays, local leaf maceration and systemic invasion in African violet, were used to evaluate these mutants. Among these, mutants of a purM homolog from Escherichia coli (purM::Tn5), and hrpB, hrcJ, and a hrpD homologs from the Erwinia carotovorum hrpA operon (hrpB::Tn5, hrcJ::Tn5, and hrpD::Tn5) exhibited reduced abilities to produce local and systemic maceration of the plant host. Mutants of rhiT from E. chrysanthemi (rhiT:: Tn5), and an eutR homolog from Salmonella typhimarium (eutR::Tn5) showed decreased ability to cause systemic invasion on African violet. However, compared with the wildtype E. chrysanthemi 3937, these mutants exhibited no significant differences in local leaf maceration. The phenotype of hrpB::Tn5, hrcC::Tn5, and hrpD::Tn5 mutants further confirmed our previous findings that hrp genes are crucial virulence determinants in E. chrysanthemi 3937.
引用
收藏
页码:999 / 1008
页数:10
相关论文
共 68 条
[1]   Erwinia chrysanthemi genes specifically induced during infection in chicory leaves [J].
Aguilar, I ;
Poza-Carrión, C ;
Guío, A ;
Rodríguez-Palenzuela, P .
MOLECULAR PLANT PATHOLOGY, 2002, 3 (04) :271-275
[2]   ERWINIA-CHRYSANTHEMI HRP GENES AND THEIR INVOLVEMENT IN SOFT-ROT PATHOGENESIS AND ELICITATION OF THE HYPERSENSITIVE RESPONSE [J].
BAUER, DW ;
BOGDANOVE, AJ ;
BEER, SV ;
COLLMER, A .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1994, 7 (05) :573-581
[3]   ERWINIA-CHRYSANTHEMI HARPIN(ECH) - AN ELICITOR OF THE HYPERSENSITIVE RESPONSE THAT CONTRIBUTES TO SOFT-ROT PATHOGENESIS [J].
BAUER, DW ;
WEI, ZM ;
BEER, SV ;
COLLMER, A .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1995, 8 (04) :484-491
[4]   Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana [J].
Boch, J ;
Joardar, V ;
Gao, L ;
Robertson, TL ;
Lim, M ;
Kunkel, BN .
MOLECULAR MICROBIOLOGY, 2002, 44 (01) :73-88
[5]   Erwinia amylovora secretes DspE, a pathogenicity factor and functional AvrE homolog, through the hrp (type III secretion) pathway [J].
Bogdanove, AJ ;
Bauer, DW ;
Beer, SV .
JOURNAL OF BACTERIOLOGY, 1998, 180 (08) :2244-2247
[6]   The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 [J].
Buell, CR ;
Joardar, V ;
Lindeberg, M ;
Selengut, J ;
Paulsen, IT ;
Gwinn, ML ;
Dodson, RJ ;
Deboy, RT ;
Durkin, AS ;
Kolonay, JF ;
Madupu, R ;
Daugherty, S ;
Brinkac, L ;
Beanan, MJ ;
Haft, DH ;
Nelson, WC ;
Davidsen, T ;
Zafar, N ;
Zhou, LW ;
Liu, J ;
Yuan, QP ;
Khouri, H ;
Fedorova, N ;
Tran, B ;
Russell, D ;
Berry, K ;
Utterback, T ;
Van Aken, SE ;
Feldblyum, TV ;
D'Ascenzo, M ;
Deng, WL ;
Ramos, AR ;
Alfano, JR ;
Cartinhour, S ;
Chatterjee, AK ;
Delaney, TP ;
Lazarowitz, SG ;
Martin, GB ;
Schneider, DJ ;
Tang, XY ;
Bender, CL ;
White, O ;
Fraser, CM ;
Collmer, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) :10181-10186
[7]  
Chatterjee A.K., 2000, Encyclopedia of Microbiology, V2, P236
[8]   Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization [J].
Chiang, SL ;
Mekalanos, JJ .
MOLECULAR MICROBIOLOGY, 1998, 27 (04) :797-805
[9]   THE ROLE OF PECTIC ENZYMES IN PLANT PATHOGENESIS [J].
COLLMER, A ;
KEEN, NT .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1986, 24 :383-409
[10]   Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments [J].
Coulter, SN ;
Schwan, WR ;
Ng, EYW ;
Langhorne, MH ;
Ritchie, HD ;
Westbrock-Wadman, S ;
Hufnagle, WO ;
Folger, KR ;
Bayer, AS ;
Stover, CK .
MOLECULAR MICROBIOLOGY, 1998, 30 (02) :393-404