Cavity problems in discontinuous media

被引:12
作者
dos Prazeres, Disson [2 ]
Teixeira, Eduardo V. [1 ]
机构
[1] Univ Fed Ceara, Dept Matemat, Campus Pici Bloco 914, Fortaleza, Ceara, Brazil
[2] Univ Chile, Ctr Math Modeling, Beauchef 851,Edificio Norte Piso 7, Santiago, Chile
关键词
FREE-BOUNDARY PROBLEM; VISCOSITY SOLUTIONS; ELLIPTIC-EQUATIONS; MINIMUM PROBLEM; REGULARITY; EXISTENCE;
D O I
10.1007/s00526-016-0955-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study cavitation type equations, div(a(i j) (X)del u) similar to delta(0)(u), for bounded, measurable elliptic media a(i j) (X). De Giorgi-Nash-Moser theory assures that solutions are alpha-Holder continuous within its set of positivity, {u > 0}, for some exponent alpha strictly less than one. Notwithstanding, the key, main result proven in this paper provides a sharp Lipschitz regularity estimate for such solutions along their free boundaries, partial derivative{u > 0}. Such a sharp estimate implies geometric-measure constrains for the free boundary. In particular, we show that the non-coincidence {u > 0} set has uniform positive density and that the free boundary has finite (n - zeta)-Hausdorff measure, for a universal number 0 < zeta <= 1.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 24 条
[1]  
ALT HW, 1981, J REINE ANGEW MATH, V325, P105
[2]   Free Transmission Problems [J].
Amaral, Marcelo D. ;
Teixeira, Eduardo V. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (03) :1465-1489
[3]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[4]  
BERESTYCKI H, 1990, LECT NOTES PURE APPL, V122, P567
[5]  
Caffarelli L.A., 1987, Rev. Mat. Iberoamericana, V3, P139
[6]   FREE-BOUNDARY PROBLEM FOR THE HEAT-EQUATION ARISING IN FLAME PROPAGATION [J].
CAFFARELLI, LA ;
VAZQUEZ, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (02) :411-441
[7]  
Caffarelli LA, 1997, INDIANA U MATH J, V46, P719
[8]  
Caffarelli LA, 1997, INDIANA U MATH J, V46, P453
[10]  
Caffarelli LA., 1988, Ann. della Scuola Norm. Super. di Pisa-Classe di Sci, V15, P583