Groundwater Prediction Using Machine-Learning Tools

被引:63
|
作者
Hussein, Eslam A. [1 ]
Thron, Christopher [2 ]
Ghaziasgar, Mehrdad [1 ]
Bagula, Antoine [1 ]
Vaccari, Mattia [3 ]
机构
[1] Univ Western Cape, Dept Comp Sci, ZA-7535 Cape Town, South Africa
[2] Univ Cent Texas, Dept Sci & Math, Killeen, TX 76549 USA
[3] Univ Western Cape, Dept Phys & Astron, ZA-7535 Cape Town, South Africa
基金
新加坡国家研究基金会;
关键词
time series data; pixel estimation; full image prediction; gaussian mixture model; global features; feature engineering; square root transformation; WATER; UNCERTAINTY; MANAGEMENT; LEVEL; MODEL; ROOT; ANN;
D O I
10.3390/a13110300
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting groundwater availability is important to water sustainability and drought mitigation. Machine-learning tools have the potential to improve groundwater prediction, thus enabling resource planners to: (1) anticipate water quality in unsampled areas or depth zones; (2) design targeted monitoring programs; (3) inform groundwater protection strategies; and (4) evaluate the sustainability of groundwater sources of drinking water. This paper proposes a machine-learning approach to groundwater prediction with the following characteristics: (i) the use of a regression-based approach to predict full groundwater images based on sequences of monthly groundwater maps; (ii) strategic automatic feature selection (both local and global features) using extreme gradient boosting; and (iii) the use of a multiplicity of machine-learning techniques (extreme gradient boosting, multivariate linear regression, random forests, multilayer perceptron and support vector regression). Of these techniques, support vector regression consistently performed best in terms of minimizing root mean square error and mean absolute error. Furthermore, including a global feature obtained from a Gaussian Mixture Model produced models with lower error than the best which could be obtained with local geographical features.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Advancing interpretability of machine-learning prediction models
    Trenary, Laurie
    DelSole, Timothy
    ENVIRONMENTAL DATA SCIENCE, 2022, 1
  • [22] Anxiety onset in adolescents: a machine-learning prediction
    Alice V. Chavanne
    Marie Laure Paillère Martinot
    Jani Penttilä
    Yvonne Grimmer
    Patricia Conrod
    Argyris Stringaris
    Betteke van Noort
    Corinna Isensee
    Andreas Becker
    Tobias Banaschewski
    Arun L. W. Bokde
    Sylvane Desrivières
    Herta Flor
    Antoine Grigis
    Hugh Garavan
    Penny Gowland
    Andreas Heinz
    Rüdiger Brühl
    Frauke Nees
    Dimitri Papadopoulos Orfanos
    Tomáš Paus
    Luise Poustka
    Sarah Hohmann
    Sabina Millenet
    Juliane H. Fröhner
    Michael N. Smolka
    Henrik Walter
    Robert Whelan
    Gunter Schumann
    Jean-Luc Martinot
    Eric Artiges
    Molecular Psychiatry, 2023, 28 : 639 - 646
  • [23] A machine-learning algorithm for wind gust prediction
    Sallis, P. J.
    Claster, W.
    Hernandez, S.
    COMPUTERS & GEOSCIENCES, 2011, 37 (09) : 1337 - 1344
  • [24] Groundwater level dynamics in a subtropical fan delta region and its future prediction using machine learning tools: Sustainable groundwater restoration
    Mahammad, Sadik
    Islam, Aznarul
    Shit, Pravat Kumar
    Islam, Abu Reza Md Towfiqul
    Alam, Edris
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2023, 47
  • [25] COMPARISON OF A MACHINE-LEARNING PREDICTION ALGORITHM WITH CLINICAL TOOLS FOR THE IDENTIFICATION OF DIABETIC PATIENTS AT RISK FOR NASH
    Tietz, Andreas
    Bader, Giovanni
    Doherty, Matt
    Reinhart, Brenda
    Balp, Maria-Magdalena
    Pedrosa, Marcos C.
    Acharya, Sandip
    Loeffler, Juergen
    Schattenberg, Joern M.
    HEPATOLOGY, 2020, 72 : 907A - 908A
  • [26] Anxiety onset in adolescents: a machine-learning prediction
    Chavanne, Alice
    Paillere Martinot, Marie Laure
    Penttilae, Jani
    Grimmer, Yvonne
    Conrod, Patricia
    Stringaris, Argyris
    van Noort, Betteke
    Isensee, Corinna
    Becker, Andreas
    Banaschewski, Tobias
    Bokde, Arun L. W.
    Desrivieres, Sylvane
    Flor, Herta
    Grigis, Antoine
    Garavan, Hugh
    Gowland, Penny
    Heinz, Andreas
    Bruehl, Ruediger
    Nees, Frauke
    Orfanos, Dimitri Papadopoulos
    Paus, Tomas
    Poustka, Luise
    Hohmann, Sarah S.
    Millenet, Sabina
    Froehner, Juliane
    Smolka, Michael
    Walter, Henrik
    Whelan, Robert
    Schumann, Gunter
    Martinot, Jean-Luc
    Artiges, Eric
    MOLECULAR PSYCHIATRY, 2023, 28 (02) : 639 - 646
  • [27] Disruption Prediction Approaches Using Machine Learning Tools in Tokamaks
    Sias, G.
    Cannas, B.
    Carcangiu, S.
    Fanni, A.
    Murari, A.
    Pau, A.
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 2880 - 2890
  • [28] PREDICTION OF REGULATORY sRNAs IN PROKARYOTES USING MACHINE LEARNING TOOLS
    Abu-halaweh, Nael
    Sabnis, Amit
    Harrison, Robert
    BIOINFORMATICS 2011, 2011, : 75 - 81
  • [29] Evaluating Precision of Annular Pressure Buildup (APB) Estimation Using Machine-Learning Tools
    Maiti, Subhadip
    Gupta, Himanshu
    Vyas, Aditya
    Kulkarni, Sandeep D.
    SPE DRILLING & COMPLETION, 2022, 37 (01) : 93 - 103
  • [30] Sepsis prediction using machine-learning methods: prolonged disorders of consciousness patients
    Metsker, O.
    Aybazova, M.
    Kondratyeva, E.
    Dryagina, N.
    Kondratev, A.
    Efimov, E.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2019, 405