Groundwater Prediction Using Machine-Learning Tools

被引:64
|
作者
Hussein, Eslam A. [1 ]
Thron, Christopher [2 ]
Ghaziasgar, Mehrdad [1 ]
Bagula, Antoine [1 ]
Vaccari, Mattia [3 ]
机构
[1] Univ Western Cape, Dept Comp Sci, ZA-7535 Cape Town, South Africa
[2] Univ Cent Texas, Dept Sci & Math, Killeen, TX 76549 USA
[3] Univ Western Cape, Dept Phys & Astron, ZA-7535 Cape Town, South Africa
基金
新加坡国家研究基金会;
关键词
time series data; pixel estimation; full image prediction; gaussian mixture model; global features; feature engineering; square root transformation; WATER; UNCERTAINTY; MANAGEMENT; LEVEL; MODEL; ROOT; ANN;
D O I
10.3390/a13110300
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting groundwater availability is important to water sustainability and drought mitigation. Machine-learning tools have the potential to improve groundwater prediction, thus enabling resource planners to: (1) anticipate water quality in unsampled areas or depth zones; (2) design targeted monitoring programs; (3) inform groundwater protection strategies; and (4) evaluate the sustainability of groundwater sources of drinking water. This paper proposes a machine-learning approach to groundwater prediction with the following characteristics: (i) the use of a regression-based approach to predict full groundwater images based on sequences of monthly groundwater maps; (ii) strategic automatic feature selection (both local and global features) using extreme gradient boosting; and (iii) the use of a multiplicity of machine-learning techniques (extreme gradient boosting, multivariate linear regression, random forests, multilayer perceptron and support vector regression). Of these techniques, support vector regression consistently performed best in terms of minimizing root mean square error and mean absolute error. Furthermore, including a global feature obtained from a Gaussian Mixture Model produced models with lower error than the best which could be obtained with local geographical features.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Groundwater quality prediction and risk assessment in Kerala, India: A machine-learning approach
    Aju, C. D.
    Achu, A. L.
    Mohammed, Maharoof P.
    Raicy, M. C.
    Gopinath, Girish
    Reghunath, Rajesh
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 370
  • [2] Stress prediction using machine-learning techniques on physiological signals
    Tu Thanh Do
    Luan Van Tran
    Tho Anh Le
    Thao Mai Thi Le
    Lan-Anh Hoang Duong
    Thuong Hoai Nguyen
    Duy The Phan
    Toi Van Vo
    Huong Thanh Thi Ha
    2023 1ST INTERNATIONAL CONFERENCE ON HEALTH SCIENCE AND TECHNOLOGY, ICHST 2023, 2023,
  • [3] Using Machine-Learning for Prediction of the Response to Cardiac Resynchronization Therapy
    Howell, Stacey J.
    Stivland, Tim
    Stein, Kenneth
    Ellenbogen, Kenneth A.
    Tereshchenko, Larisa G.
    JACC-CLINICAL ELECTROPHYSIOLOGY, 2021, 7 (12) : 1505 - 1515
  • [4] An Integrated GIS and Machine-Learning Technique for Groundwater Quality Assessment and Prediction in Southern Saudi Arabia
    El-Rawy, Mustafa
    Batelaan, Okke
    Alshehri, Fahad
    Almadani, Sattam
    Ahmed, Mohamed S.
    Elbeltagi, Ahmed
    WATER, 2023, 15 (13)
  • [5] Prediction of groundwater quality using efficient machine learning technique
    Singha, Sudhakar
    Pasupuleti, Srinivas
    Singha, Soumya S.
    Singh, Rambabu
    Kumar, Suresh
    CHEMOSPHERE, 2021, 276
  • [6] The prediction of aquifer groundwater level based on spatial clustering approach using machine learning
    Kardan Moghaddam, Hamid
    Milan, Sami Ghordoyee
    Kayhomayoon, Zahra
    kivi, Zahra Rahimzadeh
    Azar, Naser Arya
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (04)
  • [7] Prediction of Fatty Liver Disease in a Chinese Population Using Machine-Learning Algorithms
    Weng, Shuwei
    Hu, Die
    Chen, Jin
    Yang, Yanyi
    Peng, Daoquan
    DIAGNOSTICS, 2023, 13 (06)
  • [8] An investigation on machine-learning models for the prediction of cyanobacteria growth
    Giere, Johannes
    Riley, Derek
    Nowling, R. J.
    McComack, Joshua
    Sander, Hedda
    FUNDAMENTAL AND APPLIED LIMNOLOGY, 2020, 194 (02) : 85 - 94
  • [9] Groundwater quality forecasting using machine learning algorithms for irrigation purposes
    El Bilali, Ali
    Taleb, Abdeslam
    Brouziyne, Youssef
    AGRICULTURAL WATER MANAGEMENT, 2021, 245 (245)
  • [10] Coastal groundwater quality prediction using objective-weighted WQI and machine learning approach
    Das, Chinmoy Ranjan
    Das, Subhasish
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (13) : 19439 - 19457