A burst-form CSI estimation approach for FDD massive MIMO systems

被引:9
作者
Azizipour, Mohammad Javad [1 ]
Mohamed-Pour, Kamal [1 ]
Swindlehurst, A. Lee [2 ]
机构
[1] KN Toosi Univ Technol, Dept Elect & Comp Engn, Tehran 19697, Iran
[2] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA
关键词
Massive MIMO; Compressed sensing; Channel estimation; Pilot overhead; Burst-form least square; CHANNEL ESTIMATION; RECOVERY; FEEDBACK;
D O I
10.1016/j.sigpro.2019.04.002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Pilot and channel state information (CSI) feedback overhead in the downlink and uplink paths are two major implementation challenges in frequency-division duplex (FDD) based massive MIMO systems. When the massive MIMO channel satisfies the burst-sparsity property, we can acquire the channel with compressed pilots and CSI feedback in a more efficient approach. This paper proposes a burst-form estimation approach, referred to as the burst-form least squares (BFLS) algorithm, to fully utilize the burstsparsity property of massive MIMO channels. The proposed algorithm is based on knowledge of the starting location of each burst at the user side. For situations where the starting locations change quickly or are otherwise initially unknown at the user, a starting point estimation (SPE) algorithm is proposed to provide the position of each burst in the channel vector. Numerical results demonstrate that the BFLS algorithm acquires the channel better than competing approaches and reaches the performance upper bound. It is shown that the SPE algorithm can find the location of bursts with high accuracy and using the estimated values do not significantly degrade the estimation quality. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 30 条
[1]  
[Anonymous], 2005, FUNDAMENTALS WIRELES
[2]  
[Anonymous], 1994, INTERIOR POINT POLYN
[3]   Estimation of Sparse MIMO Channels with Common Support [J].
Barbotin, Yann ;
Hormati, Ali ;
Rangan, Sundeep ;
Vetterli, Martin .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (12) :3705-3716
[4]   Application of Compressive Sensing to Sparse Channel Estimation [J].
Berger, Christian R. ;
Wang, Zhaohui ;
Huang, Jianzhong ;
Zhou, Shengli .
IEEE COMMUNICATIONS MAGAZINE, 2010, 48 (11) :164-174
[5]   Massive MIMO: Ten Myths and One Critical Question [J].
Bjornson, Emil ;
Larsson, Erik G. ;
Marzetta, Thomas L. .
IEEE COMMUNICATIONS MAGAZINE, 2016, 54 (02) :114-123
[6]  
Chan PWC, 2006, IEEE COMMUN MAG, V44, P42
[7]   Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training With Memory [J].
Choi, Junil ;
Love, David J. ;
Bidigare, Patrick .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :802-814
[8]   Block-Sparse Signals: Uncertainty Relations and Efficient Recovery [J].
Eldar, Yonina C. ;
Kuppinger, Patrick ;
Boelcskei, Helmut .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (06) :3042-3054
[9]   Structured Compressive Sensing-Based Spatio-Temporal Joint Channel Estimation for FDD Massive MIMO [J].
Gao, Zhen ;
Dai, Linglong ;
Dai, Wei ;
Shim, Byonghyo ;
Wang, Zhaocheng .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2016, 64 (02) :601-617
[10]   Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO [J].
Gao, Zhen ;
Dai, Linglong ;
Wang, Zhaocheng ;
Chen, Sheng .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (23) :6169-6183