Identifiability for a Class of Symmetric Tensors

被引:6
作者
Angelini, Elena [1 ]
Chiantini, Luca [1 ]
Mazzon, Andrea [1 ]
机构
[1] Univ Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, Italy
关键词
Symmetric tensors; Waring identifiability; Kruskal's criterion; Hilbert function; Cayley-Bacharach property; DECOMPOSITIONS; CRITERIA;
D O I
10.1007/s00009-019-1363-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use methods of algebraic geometry to find new, effective methods for detecting the identifiability of symmetric tensors. In particular, for ternary symmetric tensors T of degree 7, we use the analysis of the Hilbert function of a finite projective set, and the Cayley-Bacharach property, to prove that, when the Kruskal's ranks of a decomposition of T are maximal (a condition which holds outside a Zariski closed set of measure 0), then the tensor T is identifiable, i.e., the decomposition is unique, even if the rank lies beyond the range of application of both the Kruskal's and the reshaped Kruskal's criteria.
引用
收藏
页数:14
相关论文
共 16 条
[1]  
Alexander J., 1995, J ALGEBRAIC GEOM, V4, P201
[2]   IDENTIFIABILITY OF PARAMETERS IN LATENT STRUCTURE MODELS WITH MANY OBSERVED VARIABLES [J].
Allman, Elizabeth S. ;
Matias, Catherine ;
Rhode, John A. .
ANNALS OF STATISTICS, 2009, 37 (6A) :3099-3132
[3]  
Anandkumar A, 2014, J MACH LEARN RES, V15, P2773
[4]   Waring decompositions and identifiability via Bertini and Macaulay2 software [J].
Angelini, Elena .
JOURNAL OF SYMBOLIC COMPUTATION, 2019, 91 :200-212
[5]   Identifiability beyond Kruskal's bound for symmetric tensors of degree 4 [J].
Angelini, Elena ;
Chiantini, Luca ;
Vannieuwenhoven, Nick .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (03) :465-485
[6]   STRATEGIES FOR ANALYZING DATA FROM VIDEO FLUOROMETRIC MONITORING OF LIQUID-CHROMATOGRAPHIC EFFLUENTS [J].
APPELLOF, CJ ;
DAVIDSON, ER .
ANALYTICAL CHEMISTRY, 1981, 53 (13) :2053-2056
[7]   Sets Computing the Symmetric Tensor Rank [J].
Ballico, Edoardo ;
Chiantini, Luca .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (02) :643-654
[8]   A criterion for detecting the identifiability of symmetric tensors of size three [J].
Ballico, Edoardo ;
Chiantini, Luca .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2012, 30 (03) :233-237
[9]  
Chiantini L., 2018, ARXIV180700642
[10]   EFFECTIVE CRITERIA FOR SPECIFIC IDENTIFIABILITY OF TENSORS AND FORMS [J].
Chiantini, Luca ;
Ottaviani, Giorgio ;
Vannieuwenhoven, Nick .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2017, 38 (02) :656-681