On cycles in the sequence of unitary Cayley graphs

被引:38
作者
Berrizbeitia, P [1 ]
Giudici, RE [1 ]
机构
[1] Univ Simon Bolivar, Dept Math, Caracas 1080A, Venezuela
关键词
Cayley graphs; induced k-cycles of a graph; group of units; arithmetic functions; chromatic polynomial uniqueness;
D O I
10.1016/j.disc.2003.11.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For n is an element of N let p(k)(n) be the number of induced k-cycles in the Cayley graph Cay (Z(n), U-n)(n) where Z(n) is the ring of integers mod n and U-n = Z(n)(*) is the group of units mod n. Our main result is: Given r is an element of N there is a number m(r), depending only on r, with r ln r less than or equal to m(r) less than or equal to 9r! such that P-k(n) = 0 if k greater than or equal to m(r) and n has at most r prime divisors. As a corollary we deduce the existence of non-trivial arithmetic functions f with the properties: f is a Z-finear combination of multiplicative arithmetic functions. f (n) = 0 for every n with at most r different prime divisors. We also prove the chromatic uniqueness of Cay (Z(n), U-n) for n a prime power. (C) 2004 Published by Elsevier B.V.
引用
收藏
页码:239 / 243
页数:5
相关论文
共 10 条
[1]  
Bari R. A., 1977, Journal of Graph Theory, V1, P269, DOI 10.1002/jgt.3190010307
[2]  
BERRIZBEITIA P, 1996, DISCRETE MATH, V19, P11
[3]   CHROMATIC POLYNOMIALS [J].
BIRKHOFF, GD ;
LEWIS, DC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 60 (NOV) :355-451
[4]   CHROMATIC-COEFFICIENTS [J].
FARRELL, EJ .
DISCRETE MATHEMATICS, 1980, 29 (03) :257-264
[5]  
GIUDICI R, 1985, 8503 U S BOL DEP MAT
[6]  
Giudici R.E., 1991, P 6 CAR C COMB COMP, V6, P185
[7]  
KOY KM, 1991, DISCRETE MATH, V96, P65
[8]  
Meredith G. H. J., 1972, Journal of Combinatorial Theory, Series B, V13, P14, DOI 10.1016/0095-8956(72)90003-2
[9]   ON THE CHROMATIC UNIQUENESS OF CERTAIN BIPARTITE GRAPHS [J].
PENG, YH .
DISCRETE MATHEMATICS, 1991, 94 (02) :129-140
[10]  
ROSSER JB, 1962, ILLINOLS J MATH, V6, P65