Eigenfunctions in a Two-Particle Anderson Tight Binding Model

被引:30
作者
Chulaevsky, Victor [1 ]
Suhov, Yuri [2 ]
机构
[1] Univ Reims, Dept Math & Informat, F-51687 Reims 2, France
[2] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
关键词
LARGE DISORDER; LOCALIZATION; PROOF;
D O I
10.1007/s00220-008-0721-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish the phenomenon of Anderson localisation for a quantum two-particle system on a lattice Z(d) with short-range interaction and in presence of an IID external potential with sufficiently regular marginal distribution.
引用
收藏
页码:701 / 723
页数:23
相关论文
共 16 条
[1]  
AIZEMAN M, 1994, REV MATH PHYS, V6, P1162
[2]   Finite-volume fractional-moment criteria for Anderson localization [J].
Aizenman, M ;
Schenker, JH ;
Friedrich, RM ;
Hundertmark, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 224 (01) :219-253
[3]   LOCALIZATION AT LARGE DISORDER AND AT EXTREME ENERGIES - AN ELEMENTARY DERIVATION [J].
AIZENMAN, M ;
MOLCHANOV, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (02) :245-278
[4]  
AIZENMAN M, LECT NOTES RAN UNPUB
[5]  
AIZENMAN M, 2008, COMMUN MATH PHYS
[6]  
Berezanskii Ju., 1968, Transl. Math. Monographs, V17
[7]  
CHULAEVSKY V, EIGENFUNCTIONS UNPUB
[8]   Wegner bounds for a two-particle tight binding model [J].
Chulaevsky, Victor ;
Suhov, Yuri .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 283 (02) :479-489
[9]   ABSENCE OF DIFFUSION IN THE ANDERSON TIGHT-BINDING MODEL FOR LARGE DISORDER OR LOW-ENERGY [J].
FROHLICH, J ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (02) :151-184
[10]   CONSTRUCTIVE PROOF OF LOCALIZATION IN THE ANDERSON TIGHT-BINDING MODEL [J].
FROHLICH, J ;
MARTINELLI, F ;
SCOPPOLA, E ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (01) :21-46