Columnar-to-equiaxed transition in a laser scan for metal additive manufacturing

被引:14
作者
Yuan, L. [1 ]
Sabau, A. S. [2 ]
StJohn, D. [3 ]
Prasad, A. [3 ]
Lee, P. D. [4 ]
机构
[1] Univ South Carolina, Columbia, SC 29201 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
[3] Univ Queensland, St Lucia, Qld 4072, Australia
[4] UCL, London WC1E 6BT, England
来源
INTERNATIONAL CONFERENCE ON MODELLING OF CASTING, WELDING AND ADVANCED SOLIDIFICATION PROCESSES (MCWASP XV) | 2020年 / 861卷
基金
英国工程与自然科学研究理事会;
关键词
SUPERALLOYS; COMPONENTS; STRENGTH; ALLOY; MODEL;
D O I
10.1088/1757-899X/861/1/012007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In laser powder bed fusion additive manufacturing (LPBFAM), different solidification conditions, e.g., thermal gradient and cooling rate, can be achieved by controlling the process parameters, such as laser power and laser speed. Tailoring the behaviour of the columnar to equiaxed transition (CET) of the printed alloy during fabrication can facilitate the production of highly customized microstructures. In this study, effective analytical solutions for both thermal conduction and solidification are employed to model solidifying melt pools. Microstructure textures and solidification conditions are evaluated for numerous combinations of laser power and laser speed under bead-on-plate conditions. This analytical-based high-throughput tool was demonstrated to select specific process parameters that lead to desired microstructures. Two selected process conditions were examined in detail by a highly parallelized microstructural solidification model to reveal both nucleation and grain growth. Both numerical solutions agree well with experiments that are performed based on bead-on-plate conditions, indicating that these numerical models aid evaluation of the nucleation parameters, providing insights for controlling CET during the LPBFAM processing.
引用
收藏
页数:8
相关论文
共 27 条
  • [1] A Microstructure Evolution Model for the Processing of Single-Crystal Alloy CMSX-4 Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair (Part II)
    Acharya, Ranadip
    Bansal, Rohan
    Gambone, Justin J.
    Das, Suman
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2014, 45 (06): : 2279 - 2290
  • [2] Modeling and simulation of thermal field and solidification in laser powder bed fusion of nickel alloy IN625
    Arisoy, Yigit M.
    Criales, Luis E.
    Ozel, Tugrul
    [J]. OPTICS AND LASER TECHNOLOGY, 2019, 109 : 278 - 292
  • [3] Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing
    Bermingham, M. J.
    StJohn, D. H.
    Krynen, J.
    Tedman-Jones, S.
    Dargusch, M. S.
    [J]. ACTA MATERIALIA, 2019, 168 : 261 - 274
  • [4] Perspectives on Additive Manufacturing
    Bourell, David L.
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 46, 2016, 46 : 1 - 18
  • [5] Additive manufacturing of metallic components - Process, structure and properties
    DebRoy, T.
    Wei, H. L.
    Zuback, J. S.
    Mukherjee, T.
    Elmer, J. W.
    Milewski, J. O.
    Beese, A. M.
    Wilson-Heid, A.
    De, A.
    Zhang, W.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2018, 92 : 112 - 224
  • [6] Numerical analysis of the weldability of superalloys
    Dye, D
    Hunziker, O
    Reed, RC
    [J]. ACTA MATERIALIA, 2001, 49 (04) : 683 - 697
  • [7] Florian A., 1992, Probabilistic Engineering Mechanics, V7, P123, DOI DOI 10.1016/0266-8920(92)90015-A
  • [8] Gäumann M, 2001, ACTA MATER, V49, P1051, DOI 10.1016/S1359-6454(00)00367-0
  • [9] Laser additive manufacturing of metallic components: materials, processes and mechanisms
    Gu, D. D.
    Meiners, W.
    Wissenbach, K.
    Poprawe, R.
    [J]. INTERNATIONAL MATERIALS REVIEWS, 2012, 57 (03) : 133 - 164
  • [10] A sensitivity analysis of the columnar-to-equiaxed transition for Ni-based superalloys in electron beam additive manufacturing
    Haines, M.
    Plotkowski, A.
    Frederick, C. L.
    Schwalbach, E. J.
    Babu, S. S.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2018, 155 : 340 - 349