Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism

被引:609
作者
Liu, Jin-Cheng
Ma, Xue-Lu
Li, Yong
Wang, Yang-Gang
Xiao, Hai
Li, Jun [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 北京市自然科学基金;
关键词
N-2; REDUCTION; IRON COMPLEXES; NITROGEN REDUCTION; AMBIENT CONDITIONS; ELECTRO-CATALYSTS; SCALING RELATIONS; FE-N-2; COMPLEX; VOLCANO CURVE; CO OXIDATION; DINITROGEN;
D O I
10.1038/s41467-018-03795-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The current industrial ammonia synthesis relies on Haber-Bosch process that is initiated by the dissociative mechanism, in which the adsorbed N-2 dissociates directly, and thus is limited by Bronsted-Evans-Polanyi (BEP) relation. Here we propose a new strategy that an anchored Fe-3 cluster on the theta-Al2O3(010) surface as a heterogeneous catalyst for ammonia synthesis from first-principles theoretical study and microkinetic analysis. We have studied the whole catalytic mechanism for conversion of N-2 to NH3 on Fe-3/theta-Al2O3(010), and find that an associative mechanism, in which the adsorbed N-2 is first hydrogenated to NNH, dominates over the dissociative mechanism, which we attribute to the large spin polarization, low oxidation state of iron, and multi-step redox capability of Fe-3 cluster. The associative mechanism liberates the turnover frequency (TOF) for ammonia production from the limitation due to the BEP relation, and the calculated TOF on Fe-3/theta-Al2O3(010) is comparable to Ru B5 site.
引用
收藏
页数:9
相关论文
共 70 条
[1]   Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts [J].
Abghoui, Younes ;
Skulason, Egill .
CATALYSIS TODAY, 2017, 286 :69-77
[2]   Electroreduction of N2 to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V: A DFT Guide for Experiments [J].
Abghoui, Younes ;
Garden, Anna L. ;
Howat, Jakob G. ;
Vegge, Tejs ;
Skulason, Egill .
ACS CATALYSIS, 2016, 6 (02) :635-646
[3]   Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design [J].
Abghoui, Younes ;
Garden, Anna L. ;
Hlynsson, Valtyr Freyr ;
Bjorgvinsdottir, Snaedis ;
Olafsdottir, Hrefna ;
Skulason, Egill .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (07) :4909-4918
[4]   Characterization of an FeN-NH2 Intermediate Relevant to Catalytic N2 Reduction to NH3 [J].
Anderson, John S. ;
Cutsail, George E., III ;
Rittle, Jonathan ;
Connor, Bridget A. ;
Gunderson, William A. ;
Zhang, Limei ;
Hoffman, Brian M. ;
Peters, Jonas C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (24) :7803-7809
[5]   Catalytic conversion of nitrogen to ammonia by an iron model complex [J].
Anderson, John S. ;
Rittle, Jonathan ;
Peters, Jonas C. .
NATURE, 2013, 501 (7465) :84-+
[6]  
Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
[7]   The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis [J].
Bligaard, T ;
Norskov, JK ;
Dahl, S ;
Matthiesen, J ;
Christensen, CH ;
Sehested, J .
JOURNAL OF CATALYSIS, 2004, 224 (01) :206-217
[8]   INTERACTION OF NITROGEN WITH IRON SURFACES .1. FE(100) AND FE(111) [J].
BOZSO, F ;
ERTL, G ;
GRUNZE, M ;
WEISS, M .
JOURNAL OF CATALYSIS, 1977, 49 (01) :18-41
[9]   A Water-Promoted Mechanism of Alcohol Oxidation on a Au(111) Surface: Understanding the Catalytic Behavior of Bulk Gold [J].
Chang, Chun-Ran ;
Yang, Xiao-Feng ;
Long, Bo ;
Li, Jun .
ACS CATALYSIS, 2013, 3 (08) :1693-1699
[10]   Theoretical Investigations of the Catalytic Role of Water in Propene Epoxidation on Gold Nanoclusters: A Hydroperoxyl-Mediated Pathway [J].
Chang, Chun-Ran ;
Wang, Yang-Gang ;
Li, Jun .
NANO RESEARCH, 2011, 4 (01) :131-142