Fejer and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

被引:41
|
作者
Chen, Feixiang [1 ]
Wu, Shanhe [2 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, Chongqing 404000, Peoples R China
[2] Longyan Univ, Dept Math & Comp Sci, Longyan 364012, Fujian, Peoples R China
关键词
D O I
10.1155/2014/386806
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a Fejer type inequality for harmonically convex functions. Our results are the generalizations of some known results. Moreover, some properties of the mappings in connection with Hermite-Hadamard and Fejer type inequalities for harmonically convex functions are also considered.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Hermite-Hadamard type inequalities for harmonically convex functions
    Iscan, Iindat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (06): : 935 - 942
  • [2] Hermite-Hadamard type inequalities for harmonically (α, m)-convex functions
    Iscan, Imdat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (02): : 381 - 390
  • [3] Hermite-Hadamard type inequalities for a new class of harmonically convex functions
    Olanipekun, Peter Olamide
    Mogbademu, Adesanmi A.
    Dragomir, Sever Silvestru
    NOTE DI MATEMATICA, 2018, 38 (01): : 23 - 33
  • [4] Mappings related to Hermite-Hadamard type inequalities for harmonically convex functions
    Latif, Muhammad Amer
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2022, 54 (11): : 665 - 678
  • [5] New Hermite-Hadamard type Inequalities for Harmonically-Convex Functions
    Latif, Muhammad Amer
    Hussain, Sabir
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (06): : 1 - 16
  • [6] HERMITE-HADAMARD, FEJER AND SHERMAN TYPE INEQUALITIES FOR GENERALIZATIONS OF SUPERQUADRATIC AND CONVEX FUNCTIONS
    Abramovich, Shoshana
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (02): : 559 - 575
  • [7] Fejer and Hermite-Hadamard type inequalities for superquadratic functions
    Abramovich, Shoshana
    Baric, Josipa
    Pecaric, Josip
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 1048 - 1056
  • [8] INEQUALITIES OF HERMITE-HADAMARD TYPE FOR EXTENDED HARMONICALLY (s, m)-CONVEX FUNCTIONS
    He, Chun-Ying
    Xi, Bo-Yan
    Guo, Bai-Ni
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 245 - 258
  • [9] Some Hermite-Hadamard Type Inequalities for Harmonically s-Convex Functions
    Chen, Feixiang
    Wu, Shanhe
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [10] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244