Asymptotic formulae and divisor problems

被引:0
作者
Calderón, C [1 ]
Zárate, MJ [1 ]
机构
[1] Univ Basque Country, Fac Ciencias, Dept Matemat, E-48080 Bilbao, Spain
关键词
Asymptotic Behaviour; Asymptotic Formula; Summatory Function; Divisor Problem;
D O I
10.1023/A:1006703503751
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the asymptotic behaviour of the summatory functions of tau(z)(n, theta), tau(k)(n, theta)z(omega(n)) and tau(k)(n, theta)z(Omega(n)).
引用
收藏
页码:287 / 295
页数:9
相关论文
共 50 条
[41]   Divisor weighted sums [J].
Friedlander J.B. ;
Iwaniec H. .
Journal of Mathematical Sciences, 2006, 137 (2) :4739-4743
[42]   Asymptotic Behaviour of Parabolic Problems with Delays in the Highest Order Derivatives [J].
András Bátkai ;
Roland Schnaubelt .
Semigroup Forum, 2004, 69 :369-399
[43]   ASYMPTOTIC PROBLEMS IN OPTIMAL CONTROL WITH A VANISHING LAGRANGIAN AND UNBOUNDED DATA [J].
Motta, Monica ;
Sartori, Caterina .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (09) :4527-4552
[44]   Asymptotic behaviour of positive large solutions of quasilinear logistic problems [J].
Alsaedi, Ramzi ;
Maagli, Habib ;
Radulescu, Vicentiu D. ;
Zeddini, Noureddine .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (28) :1-15
[45]   ASYMPTOTIC BEHAVIOUR OF THE LEAST ENERGY SOLUTIONS TO FRACTIONAL NEUMANN PROBLEMS [J].
Gandal, Somnath ;
Tyagi, Jagmohan .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2025, 118 (02) :178-209
[46]   Asymptotic Symmetry for a Class of Quasi-Linear Parabolic Problems [J].
Montoro, Luigi ;
Sciunzi, Berardino ;
Squassina, Marco .
ADVANCED NONLINEAR STUDIES, 2010, 10 (04) :789-818
[48]   THE DIVISOR PROBLEM FOR ARITHMETIC PROGRESSIONS [J].
LI, HZ .
CHINESE SCIENCE BULLETIN, 1995, 40 (04) :265-267
[49]   The mean square of the divisor function [J].
Jia, Chaohua ;
Sankaranarayanan, Ayyadurai .
ACTA ARITHMETICA, 2014, 164 (02) :181-208
[50]   Remarks on the asymptotic behaviour of the solution to parabolic problems in domains becoming unbounded [J].
Chipot, M ;
Rougirel, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (01) :3-11