Performance Analysis of a Photovoltaic-Thermal Integrated System

被引:48
|
作者
Radziemska, Ewa [1 ]
机构
[1] Gdansk Univ Technol, Fac Chem, PL-80233 Gdansk, Poland
关键词
SOLAR; COLLECTOR; HEAT; ELECTRICITY; WATER;
D O I
10.1155/2009/732093
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present commercial photovoltaic solar cells (PV) converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is higly desirable to obtain efficiency increase. The total efficiency of 60-80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV). In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings-the destroyed exergy has been called anergy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiences in a system. This information, which cannot be provided by other means (e. g., an energy analysis), is very useful for the improvement and cost-effectiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solarwatt module. Copyright (C) 2009 Ewa Radziemska.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Numerical analysis of performance of a building integrated photovoltaic-thermal collector system
    Corbin, Charles D.
    Zhai, John
    FIRST INTERNATIONAL CONFERENCE ON BUILDING ENERGY AND ENVIRONMENT, PROCEEDINGS VOLS 1-3, 2008, : 421 - 428
  • [2] Development and performance analysis on a photovoltaic-thermal integrated heat pump water heating system
    Xu Guoying
    Xu Xinjian
    Zhang Xiaosong
    Yang Lei
    PROCEEDINGS OF ISES SOLAR WORLD CONGRESS 2007: SOLAR ENERGY AND HUMAN SETTLEMENT, VOLS I-V, 2007, : 2023 - +
  • [3] Performance analysis of a novel integrated photovoltaic-thermal system by top-surface forced circulation of water
    Arefin, Md Arman
    Islam, Mohammad Towhidul
    Zunaed, Mohammad
    Mostakim, Khodadad
    CLEAN ENERGY, 2020, 4 (04): : 316 - 327
  • [4] Experimental and numerical investigation on thermal and electrical performance of a building integrated photovoltaic-thermal collector system
    Corbin, Charles D.
    Zhai, Zhiqiang John
    ENERGY AND BUILDINGS, 2010, 42 (01) : 76 - 82
  • [5] Performance Analysis of Integrated Photovoltaic-Thermal and Air Source Heat Pump System through Energy Simulation
    Bae, Sangmu
    Chae, Soowon
    Nam, Yujin
    ENERGIES, 2022, 15 (02)
  • [6] PERFORMANCE ANALYSIS OF A HYBRID PHOTOVOLTAIC-THERMAL WATER COLLECTOR
    Zhu, Qunzhi
    Mu, Lijuan
    Li, Qifen
    Si, Leilei
    Ren, Jianxing
    Wu, Jiang
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON POWER ENGINEERING 2009 (ICOPE-09), VOL 1, 2009, : 151 - 156
  • [7] A comparative performance evaluation and sensitivity analysis of a photovoltaic-thermal system with radiative cooling
    Ahmed, Salman
    Li, Zhenpeng
    Ma, Tao
    Javed, Muhammad Shahzad
    Yang, Hongxing
    Ma, Tao (tao.ma@connect.polyu.hk), 1600, Elsevier B.V. (221):
  • [8] Infrared thermography energy performance analysis of a hybrid air photovoltaic-thermal system
    Sahlaoui, Kamel
    Oueslati, Hatem
    Nasri, Hamza
    Ben Mabrouk, Salah
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (03) : 6918 - 6931
  • [9] A comparative performance evaluation and sensitivity analysis of a photovoltaic-thermal system with radiative cooling
    Ahmed, Salman
    Li, Zhenpeng
    Ma, Tao
    Javed, Muhammad Shahzad
    Yang, Hongxing
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 221
  • [10] Performance of buildings integrated with a photovoltaic-thermal collector and phase change materials
    Zhou, Yuekuan
    Liu, Xiaohong
    Zhang, Guoqiang
    10TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATION AND AIR CONDITIONING, ISHVAC2017, 2017, 205 : 1337 - 1343