DIMENSIONAL IMPROVEMENTS OF THE LOGARITHMIC SOBOLEV, TALAGRAND AND BRASCAMP-LIEB INEQUALITIES

被引:21
作者
Bolley, Francois [1 ]
Gentil, Ivan [2 ]
Guillin, Arnaud [3 ]
机构
[1] Univ Paris 06, CNRS, Lab Probabil & Modeles Aleatoires, UMR 7599, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, UMR 5208,CNRS, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[3] Univ Clermont Auvergne, CNRS, Lab Math, UMR 6620, Ave Landais, F-63177 Aubiere, France
关键词
Logarithmic Sobolev inequality; Talagrand inequality; Brascamp-Lieb inequality; Fokker-Planck equations; optimal transport; HAMILTON-JACOBI EQUATIONS; BRUNN-MINKOWSKI; GRADIENT FLOWS; MASS-TRANSPORT; HYPERCONTRACTIVITY; DISTANCE; SPACES;
D O I
10.1214/17-AOP1184
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work, we consider dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities. For this, we use optimal transport methods and the Borell-Brascamp-Lieb inequality. These refinements can be written as a deficit in the classical inequalities. They have the right scale with respect to the dimension. They lead to sharpened concentration properties as well as refined contraction bounds, convergence to equilibrium and short time behavior for the laws of solutions to stochastic differential equations.
引用
收藏
页码:261 / 301
页数:41
相关论文
共 50 条
[41]   Interpolation Between Modified Logarithmic Sobolev and Poincaré Inequalities for Quantum Markovian Dynamics [J].
Li, Bowen ;
Lu, Jianfeng .
JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (10)
[42]   On weighted logarithmic-Sobolev & logarithmic-Hardy inequalities [J].
Das, Ujjal .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 496 (01)
[43]   Modified Logarithmic Sobolev Inequalities and Transportation Cost Inequalities in Rn [J].
Shao, Jinghai .
POTENTIAL ANALYSIS, 2009, 31 (02) :183-202
[44]   Quantum logarithmic Sobolev inequalities and rapid mixing [J].
Kastoryano, Michael J. ;
Temme, Kristan .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (05)
[45]   Revised logarithmic Sobolev inequalities of fractional order [J].
Chatzakou, Marianna ;
Ruzhansky, Michael .
BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 197
[46]   Logarithmic Sobolev inequalities on noncompact Riemannian manifolds [J].
Wang, FY .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 109 (03) :417-424
[47]   Logarithmic Sobolev inequalities for Moebius measures on spheres [J].
Barthe, Franck ;
Ma, Yutao ;
Zhang, Zhengliang .
FORUM MATHEMATICUM, 2018, 30 (01) :1-13
[48]   Logarithmic Sobolev inequalities for harmonic measures on spheres [J].
Barthe, Franck ;
Ma, Yutao ;
Zhang, Zhengliang .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (01) :234-248
[49]   Modified logarithmic Sobolev inequalities in null curvature [J].
Gentil, Ivan ;
Guillin, Arnaud ;
Miclo, Laurent .
REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (01) :235-258
[50]   QUANTITATIVE LOGARITHMIC SOBOLEV INEQUALITIES AND STABILITY ESTIMATES [J].
Fathi, Max ;
Indrei, Emanuel ;
Ledoux, Michel .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (12) :6835-6853