DIMENSIONAL IMPROVEMENTS OF THE LOGARITHMIC SOBOLEV, TALAGRAND AND BRASCAMP-LIEB INEQUALITIES

被引:21
作者
Bolley, Francois [1 ]
Gentil, Ivan [2 ]
Guillin, Arnaud [3 ]
机构
[1] Univ Paris 06, CNRS, Lab Probabil & Modeles Aleatoires, UMR 7599, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, UMR 5208,CNRS, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[3] Univ Clermont Auvergne, CNRS, Lab Math, UMR 6620, Ave Landais, F-63177 Aubiere, France
关键词
Logarithmic Sobolev inequality; Talagrand inequality; Brascamp-Lieb inequality; Fokker-Planck equations; optimal transport; HAMILTON-JACOBI EQUATIONS; BRUNN-MINKOWSKI; GRADIENT FLOWS; MASS-TRANSPORT; HYPERCONTRACTIVITY; DISTANCE; SPACES;
D O I
10.1214/17-AOP1184
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work, we consider dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities. For this, we use optimal transport methods and the Borell-Brascamp-Lieb inequality. These refinements can be written as a deficit in the classical inequalities. They have the right scale with respect to the dimension. They lead to sharpened concentration properties as well as refined contraction bounds, convergence to equilibrium and short time behavior for the laws of solutions to stochastic differential equations.
引用
收藏
页码:261 / 301
页数:41
相关论文
共 50 条
[31]   Logarithmic Sobolev Inequalities for an Ideal Bose Gas [J].
Cipriani, Fabio .
ADVANCES IN QUANTUM MECHANICS: CONTEMPORARY TRENDS AND OPEN PROBLEMS, 2017, 18 :121-133
[32]   From concentration to logarithmic Sobolev and Poincare inequalities [J].
Gozlan, Nathael ;
Roberto, Cyril ;
Samson, Paul-Marie .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (05) :1491-1522
[33]   Interpolation between logarithmic Sobolev and Poincare inequalities [J].
Arnold, Anton ;
Bartier, Jean-Philippe ;
Dolbeault, Jean .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (04) :971-979
[34]   The Logarithmic Sobolev and Sobolev Inequalities Along the Ricci Flow [J].
Ye, Rugang .
COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2015, 3 (01) :1-36
[35]   Logarithmic Sobolev inequalities: Conditions and counterexamples [J].
Wang, FY .
JOURNAL OF OPERATOR THEORY, 2001, 46 (01) :183-197
[36]   Logarithmic Sobolev inequalities for fractional diffusion [J].
Fan, XiLiang .
STATISTICS & PROBABILITY LETTERS, 2015, 106 :165-172
[37]   Isoperimetry and symmetrization for logarithmic Sobolev inequalities [J].
Martin, Joaquim ;
Milman, Mario .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (01) :149-178
[38]   Error Bounds for Particle Gradient Descent, and Extensions of the log-Sobolev and Talagrand Inequalities [J].
Caprio, Rocco ;
Kuntz, Juan ;
Power, Samuel ;
Johansen, Adam M. .
JOURNAL OF MACHINE LEARNING RESEARCH, 2025, 26
[39]   BORELL-BRASCAMP-LIEB INEQUALITIES IN SPACES WITH BITRIANGULAR LAWS OF COMPOSITION, WITH APPLICATIONS [J].
Wu, Denghui ;
Wang, Chen-Lu ;
Bu, Zhen-Hui .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2025, 55 (01) :289-298
[40]   Logarithmic Sobolev Inequalities for Infinite Dimensional Hormander Type Generators on the Heisenberg Group [J].
Inglis, J. ;
Papageorgiou, I. .
POTENTIAL ANALYSIS, 2009, 31 (01) :79-102