DIMENSIONAL IMPROVEMENTS OF THE LOGARITHMIC SOBOLEV, TALAGRAND AND BRASCAMP-LIEB INEQUALITIES

被引:21
作者
Bolley, Francois [1 ]
Gentil, Ivan [2 ]
Guillin, Arnaud [3 ]
机构
[1] Univ Paris 06, CNRS, Lab Probabil & Modeles Aleatoires, UMR 7599, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, UMR 5208,CNRS, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[3] Univ Clermont Auvergne, CNRS, Lab Math, UMR 6620, Ave Landais, F-63177 Aubiere, France
关键词
Logarithmic Sobolev inequality; Talagrand inequality; Brascamp-Lieb inequality; Fokker-Planck equations; optimal transport; HAMILTON-JACOBI EQUATIONS; BRUNN-MINKOWSKI; GRADIENT FLOWS; MASS-TRANSPORT; HYPERCONTRACTIVITY; DISTANCE; SPACES;
D O I
10.1214/17-AOP1184
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work, we consider dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities. For this, we use optimal transport methods and the Borell-Brascamp-Lieb inequality. These refinements can be written as a deficit in the classical inequalities. They have the right scale with respect to the dimension. They lead to sharpened concentration properties as well as refined contraction bounds, convergence to equilibrium and short time behavior for the laws of solutions to stochastic differential equations.
引用
收藏
页码:261 / 301
页数:41
相关论文
共 39 条
[1]  
Ambrosio L., 2008, LECT MATH ETH ZURICH
[2]  
Bakry D, 2006, REV MAT IBEROAM, V22, P683
[3]   Dimension dependent hypercontractivity for Gaussian kernels [J].
Bakry, Dominique ;
Bolley, Francois ;
Gentil, Ivan .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 154 (3-4) :845-874
[4]   Mass transport and variants of the logarithmic sobolev inequality [J].
Barthe, Franck ;
Kolesnikov, Alexander V. .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (04) :921-979
[5]   From brunn-minkowski to sharp sobolev inequalities [J].
Bobkov, S. G. ;
Ledoux, M. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (03) :369-384
[6]   Bounds on the deficit in the logarithmic Sobolev inequality [J].
Bobkov, S. G. ;
Gozlan, N. ;
Roberto, C. ;
Samson, P. -M. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (11) :4110-4138
[7]   WEIGHTED POINCARE-TYPE INEQUALITIES FOR CAUCHY AND OTHER CONVEX MEASURES [J].
Bobkov, Sergey G. ;
Ledoux, Michel .
ANNALS OF PROBABILITY, 2009, 37 (02) :403-427
[8]   Hypercontractivity of Hamilton-Jacobi equations [J].
Bobkov, SG ;
Gentil, I ;
Ledoux, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07) :669-696
[9]   From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities [J].
Bobkov, SG ;
Ledoux, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (05) :1028-1052
[10]  
BOLLEY F., ANN SC NORM IN PRESS, DOI [10.2422/2036-2145.201611_009, DOI 10.2422/2036-2145.201611_009]