A Prussian blue analogue as a long-life cathode for liquid-state and solid-state sodium-ion batteries

被引:47
作者
Huang, Tianbei [1 ,2 ]
Du, Guangyuan [1 ,2 ]
Qi, Yuruo [1 ,2 ]
Li, Jie [1 ,2 ]
Zhong, Wei [1 ,2 ]
Yang, Qiuju [1 ,2 ]
Zhang, Xuan [1 ,2 ]
Xu, Maowen [1 ,2 ]
机构
[1] Southwest Univ, Key Lab Luminescence Anal & Mol Sensing, Sch Mat & Energy, Minist Educ, Chongqing 400715, Peoples R China
[2] Southwest Univ, Sch Mat & Energy, Chongqing Key Lab Adv Mat & Clean Energies Techno, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
NICKEL HEXACYANOFERRATE; RATE CAPABILITY; ELECTROLYTE; INSERTION;
D O I
10.1039/d0qi00872a
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Prussian blue analogues (PBAs) as a kind of promising cathode material for sodium-ion batteries (SIBs) have attracted much attention due to their low price and open three-dimensional (3D) channel structure. Here, a facile wet-chemical method is used to synthesize a nano-sized NiFe-PBA compound. The as-synthesized NiFe-PBA not only exhibits good structural stability but also demonstrates impressive electrochemical performance when it is used as a cathode in SIBs. Both liquid-state and solid-state sodium-ion batteries (SSIBs) demonstrate excellent cycling stability with a capacity retention of 85.8% and 86.7%, respectively, after 1120 cycles.
引用
收藏
页码:3938 / 3944
页数:7
相关论文
共 35 条
[1]  
[Anonymous], 2017, Angewandte Chemie
[2]   Novel Iron Oxyhydroxide Lepidocrocite Nanosheet as Ultrahigh Power Density Anode Material for Asymmetric Supercapacitors [J].
Chen, Ying-Chu ;
Lin, Yan-Gu ;
Hsu, Yu-Kuei ;
Yen, Shi-Chern ;
Chen, Kuei-Hsien ;
Chen, Li-Chyong .
SMALL, 2014, 10 (18) :3803-3810
[3]   Low-Operating Temperature, High-Rate and Durable Solid-State Sodium-Ion Battery Based on Polymer Electrolyte and Prussian Blue Cathode [J].
Du, Guangyuan ;
Tao, Mengli ;
Li, Jie ;
Yang, Tingting ;
Gao, Wei ;
Deng, Jianhua ;
Qi, Yuruo ;
Bao, Shu-Juan ;
Xu, Maowen .
ADVANCED ENERGY MATERIALS, 2020, 10 (05)
[4]   Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium- and Sodium-Ion Batteries [J].
Fang, Shan ;
Bresser, Dominic ;
Passerini, Stefano .
ADVANCED ENERGY MATERIALS, 2020, 10 (01)
[5]  
Gao H, 2016, ANGEW CHEM INT EDIT, V128, P12960, DOI [10.1002/ange.201606508, DOI 10.1002/ANGE.201606508]
[6]   A composite gel polymer electrolyte with high voltage cyclability for Ni-rich cathode of lithium-ion battery [J].
Hu, Pu ;
Zhao, Jianghui ;
Wang, Tianshi ;
Shang, Chaoqun ;
Zhang, Junnan ;
Qin, Bingsheng ;
Liu, Zhihong ;
Xiong, Junwei ;
Cui, Guanglei .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 61 :32-35
[7]   A Chemical Precipitation Method Preparing Hollow-Core-Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodium-Ion Batteries [J].
Huang, Yongxin ;
Xie, Man ;
Wang, Ziheng ;
Jiang, Ying ;
Yao, Ying ;
Li, Shuaijie ;
Li, Zehua ;
Li, Li ;
Wu, Feng ;
Chen, Renjie .
SMALL, 2018, 14 (28)
[8]   Cation effect on the structure and properties of hexacyanometallates-based nanocomposites: Improving cathode performance in aqueous metal-ions batteries [J].
Husmann, Samantha ;
Zarbin, Aldo J. G. .
ELECTROCHIMICA ACTA, 2018, 283 :1339-1350
[9]   Charge-density-dependent partitioning of Cs+ and K+ into nickel hexacyanoferrate matrixes [J].
Jeerage, KM ;
Steen, WA ;
Schwartz, DT .
LANGMUIR, 2002, 18 (09) :3620-3625
[10]   Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries [J].
Kim, Sung-Wook ;
Seo, Dong-Hwa ;
Ma, Xiaohua ;
Ceder, Gerbrand ;
Kang, Kisuk .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :710-721