A Prussian blue analogue as a long-life cathode for liquid-state and solid-state sodium-ion batteries

被引:46
作者
Huang, Tianbei [1 ,2 ]
Du, Guangyuan [1 ,2 ]
Qi, Yuruo [1 ,2 ]
Li, Jie [1 ,2 ]
Zhong, Wei [1 ,2 ]
Yang, Qiuju [1 ,2 ]
Zhang, Xuan [1 ,2 ]
Xu, Maowen [1 ,2 ]
机构
[1] Southwest Univ, Key Lab Luminescence Anal & Mol Sensing, Sch Mat & Energy, Minist Educ, Chongqing 400715, Peoples R China
[2] Southwest Univ, Sch Mat & Energy, Chongqing Key Lab Adv Mat & Clean Energies Techno, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
NICKEL HEXACYANOFERRATE; RATE CAPABILITY; ELECTROLYTE; INSERTION;
D O I
10.1039/d0qi00872a
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Prussian blue analogues (PBAs) as a kind of promising cathode material for sodium-ion batteries (SIBs) have attracted much attention due to their low price and open three-dimensional (3D) channel structure. Here, a facile wet-chemical method is used to synthesize a nano-sized NiFe-PBA compound. The as-synthesized NiFe-PBA not only exhibits good structural stability but also demonstrates impressive electrochemical performance when it is used as a cathode in SIBs. Both liquid-state and solid-state sodium-ion batteries (SSIBs) demonstrate excellent cycling stability with a capacity retention of 85.8% and 86.7%, respectively, after 1120 cycles.
引用
收藏
页码:3938 / 3944
页数:7
相关论文
共 35 条
  • [1] [Anonymous], 2017, Angewandte Chemie
  • [2] Novel Iron Oxyhydroxide Lepidocrocite Nanosheet as Ultrahigh Power Density Anode Material for Asymmetric Supercapacitors
    Chen, Ying-Chu
    Lin, Yan-Gu
    Hsu, Yu-Kuei
    Yen, Shi-Chern
    Chen, Kuei-Hsien
    Chen, Li-Chyong
    [J]. SMALL, 2014, 10 (18) : 3803 - 3810
  • [3] Low-Operating Temperature, High-Rate and Durable Solid-State Sodium-Ion Battery Based on Polymer Electrolyte and Prussian Blue Cathode
    Du, Guangyuan
    Tao, Mengli
    Li, Jie
    Yang, Tingting
    Gao, Wei
    Deng, Jianhua
    Qi, Yuruo
    Bao, Shu-Juan
    Xu, Maowen
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (05)
  • [4] Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium- and Sodium-Ion Batteries
    Fang, Shan
    Bresser, Dominic
    Passerini, Stefano
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (01)
  • [5] Gao H., 2016, ANGEW CHEM, V128, P12960, DOI DOI 10.1002/ANGE.201606508
  • [6] A composite gel polymer electrolyte with high voltage cyclability for Ni-rich cathode of lithium-ion battery
    Hu, Pu
    Zhao, Jianghui
    Wang, Tianshi
    Shang, Chaoqun
    Zhang, Junnan
    Qin, Bingsheng
    Liu, Zhihong
    Xiong, Junwei
    Cui, Guanglei
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2015, 61 : 32 - 35
  • [7] A Chemical Precipitation Method Preparing Hollow-Core-Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodium-Ion Batteries
    Huang, Yongxin
    Xie, Man
    Wang, Ziheng
    Jiang, Ying
    Yao, Ying
    Li, Shuaijie
    Li, Zehua
    Li, Li
    Wu, Feng
    Chen, Renjie
    [J]. SMALL, 2018, 14 (28)
  • [8] Cation effect on the structure and properties of hexacyanometallates-based nanocomposites: Improving cathode performance in aqueous metal-ions batteries
    Husmann, Samantha
    Zarbin, Aldo J. G.
    [J]. ELECTROCHIMICA ACTA, 2018, 283 : 1339 - 1350
  • [9] Charge-density-dependent partitioning of Cs+ and K+ into nickel hexacyanoferrate matrixes
    Jeerage, KM
    Steen, WA
    Schwartz, DT
    [J]. LANGMUIR, 2002, 18 (09) : 3620 - 3625
  • [10] Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
    Kim, Sung-Wook
    Seo, Dong-Hwa
    Ma, Xiaohua
    Ceder, Gerbrand
    Kang, Kisuk
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (07) : 710 - 721