Bounds on the vertex-edge domination number of a tree

被引:37
作者
Krishnakumari, Balakrishna [1 ]
Venkatakrishnan, Yanamandram B. [1 ]
Krzywkowski, Marcin [2 ,3 ]
机构
[1] SASTRA Univ, Dept Math, Tanjore, Tamil Nadu, India
[2] Univ Johannesburg, Dept Math, Johannesburg, South Africa
[3] Gdansk Univ Technol, Fac Elect Telecommun & Informat, Gdansk, Poland
关键词
D O I
10.1016/j.crma.2014.03.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vertex-edge dominating set of a graph G is a set D of vertices of G such that every edge of G is incident with a vertex of D or a vertex adjacent to a vertex of D. The vertex-edge domination number of a graph G, denoted by gamma(ve)(T), is the minimum cardinality of a vertex-edge dominating set of G. We prove that for every tree T of order n >= 3 with l leaves and s support vertices, we have (n - l - s + 3)/4 <= gamma(ve)(T) <= n/3, and we characterize the trees attaining each of the bounds. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:363 / 366
页数:4
相关论文
共 7 条
  • [1] Chellali M., 2006, Journal of Combinatorial Mathematics and Combinatorial Computing, V58, P189
  • [2] Haynes T.W., 1998, Chapman & Hall/CRC Pure and Applied Mathematics
  • [3] Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
  • [5] Lemanska M., 2004, Discussiones Mathematicae Graph Theory, V24, P165, DOI 10.7151/dmgt.1222
  • [6] Lewis J, 2010, UTILITAS MATHEMATICA, V81, P193
  • [7] Peters J. W., 1986, THESIS CLEMSON U