NUMERICAL SIMULATIONS OF KINETIC MODELS FOR CHEMOTAXIS

被引:14
|
作者
Filbet, Francis [1 ]
Yang, Chang [1 ]
机构
[1] Univ Lyon 1, Inst Camille Jordan, CNRS UMR5208, UL1,INSAL,ECL, F-69622 Villeurbanne, France
基金
欧洲研究理事会;
关键词
bacterial chemotaxis; chemical signaling; kinetic theory; HYPERBOLIC MODELS; BACTERIA; AGGREGATION; ADAPTATION; SCHEME; CELLS;
D O I
10.1137/130910208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new algorithm based on a Cartesian mesh for the numerical approximation of kinetic models for chemosensitive movements set in an arbitrary geometry. We investigate the influence of the geometry on the collective behavior of bacteria described by a kinetic equation interacting with nutrients and chemoattractants. Numerical simulations are performed to verify accuracy and stability of the scheme and its ability to exhibit aggregation of cells and wave propagations. Finally, some comparisons with experiments show the robustness and accuracy of such kinetic models.
引用
收藏
页码:B348 / B366
页数:19
相关论文
共 50 条
  • [31] Derivation and numerical comparison of Shakhov and Ellipsoidal Statistical kinetic models for a monoatomic gas mixture
    Todorova, Blaga N.
    Steijl, Rene
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2019, 76 : 390 - 402
  • [32] Hybrid models of chemotaxis with application to leukocyte migration
    Lu, Hannah
    Um, Kimoon
    Tartakovsky, Daniel M.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2021, 82 (04)
  • [33] A user's guide to PDE models for chemotaxis
    Hillen, T.
    Painter, K. J.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) : 183 - 217
  • [34] Hybrid models of chemotaxis with application to leukocyte migration
    Hannah Lu
    Kimoon Um
    Daniel M. Tartakovsky
    Journal of Mathematical Biology, 2021, 82
  • [35] MULTISCALE BIOLOGICAL TISSUE MODELS AND FLUX-LIMITED CHEMOTAXIS FOR MULTICELLULAR GROWING SYSTEMS
    Bellomo, Nicola
    Bellouquid, Abdelghani
    Nieto, Juan
    Soler, Juan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (07) : 1179 - 1207
  • [36] Numerical Simulations of Unsteady Flows From Rarefied Transition to Continuum Using Gas-Kinetic Unified Algorithm
    Wu, Junlin
    Li, Zhihui
    Peng, Aoping
    Jiang, Xinyu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2015, 7 (05) : 569 - 596
  • [37] A Discrete Velocity Kinetic Model with Food Metric: Chemotaxis Traveling Waves
    Choi, Sun-Ho
    Kim, Yong-Jung
    BULLETIN OF MATHEMATICAL BIOLOGY, 2017, 79 (02) : 277 - 302
  • [38] KINETIC MODELS FOR NANOFLUIDICS
    Frezzotti, Aldo
    APPLIED AND INDUSTRIAL MATHEMATICS IN ITALY II, 2007, 75 : 375 - 386
  • [39] NONLINEAR FLUX-LIMITED MODELS FOR CHEMOTAXIS ON NETWORKS
    Borsche, Raul
    Klar, Axel
    Ha Pham, T. N.
    NETWORKS AND HETEROGENEOUS MEDIA, 2017, 12 (03) : 381 - 401
  • [40] On the hydrodynamical limit for a one dimensional kinetic model of cell aggregation by chemotaxis
    James, Francois
    Vauchelet, Nicolas
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2012, 3 (01): : 91 - 113