Consumer Level Multi-GPU Systems Utilization, Efficiency, and Optimization

被引:0
|
作者
Ross, John Brandon [1 ]
机构
[1] Univ Alabama, Huntsville, AL 35899 USA
来源
2013 PROCEEDINGS OF IEEE SOUTHEASTCON | 2013年
关键词
Graphics Processing Unit; GPU; Multi-GPU; Multi-Card; High Performance Computing; General Purpose GPU;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper focuses on the basic techniques that a common programmer can use to utilize multiple consumer level GPUs, commonly available to them at home or through purchase, to assist them in massively parallel computation in their work. It lays out an experimental framework to determine the best and easiest styles of programming for multiple GPUs to use, without actually using the more complex and available NVIDIA multi-GPU templates and techniques.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Priority-Based PCIe Scheduling for Multi-Tenant Multi-GPU Systems
    Li, Chen
    Sun, Yifan
    Jin, Lingling
    Xu, Lingjie
    Cao, Zheng
    Fan, Pengfei
    Kaeli, David
    Ma, Sheng
    Guo, Yang
    Yang, Jun
    IEEE COMPUTER ARCHITECTURE LETTERS, 2019, 18 (02) : 157 - 160
  • [42] MULTI-GPU BASED TWO-LEVEL ACCELERATION OF FULL WAVEFORM INVERSION
    Luo, Jingrui
    Gao, Jinghuai
    Wang, Baoli
    JOURNAL OF SEISMIC EXPLORATION, 2012, 21 (04): : 377 - 394
  • [43] Multi-GPU performance optimization of a computational fluid dynamics code using OpenACC
    Xue, Weicheng
    Roy, Christoper J.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (05):
  • [44] HPSM: a programming framework to exploit multi-CPU and multi-GPU systems simultaneously
    Ferreira Lima, Joao Vicente
    Di Domenico, Daniel
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2019, 10 (03) : 201 - 211
  • [45] SeisSol on Distributed Multi-GPU Systems: CUDA Code Generation for the Modal Discontinuous Galerkin Method
    Dorozhinskii, Ravil
    Bader, Michael
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING IN ASIA-PACIFIC REGION (HPC ASIA 2021), 2020, : 69 - 82
  • [46] Multi-level Optimization of Matrix Multiplication for GPU-equipped Systems
    Matsumoto, Kazuya
    Nakasato, Naohito
    Sakai, Tomoya
    Yahagi, Hideki
    Sedukhin, Stanislav G.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS), 2011, 4 : 342 - 351
  • [47] Multi-GPU Implementation of the Uniformization Method for Solving Markov Models
    Karwacki, Marek
    Bylina, Beata
    Bylina, Jaroslaw
    2012 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2012, : 533 - 537
  • [48] Sailfish: A flexible multi-GPU implementation of the lattice Boltzmann method
    Januszewski, M.
    Kostur, M.
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (09) : 2350 - 2368
  • [49] Porting the MPI-parallelised LES model PALM to multi-GPU systems and many integrated core processors - an experience report
    Knoop, Helge
    Gronemeier, Tobias
    Suehring, Matthias
    Steinbach, Peter
    Noack, Matthias
    Wende, Florian
    Steinke, Thomas
    Knigge, Christoph
    Raasch, Siegfried
    Ketelsen, Klaus
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2018, 17 (03) : 297 - 309
  • [50] Automatic tuning to performance modelling of matrix polynomials on multicore and multi-GPU systems
    Boratto, Murilo
    Alonso, Pedro
    Gimenez, Domingo
    Lastovetsky, Alexey
    JOURNAL OF SUPERCOMPUTING, 2017, 73 (01): : 227 - 239