Consumer Level Multi-GPU Systems Utilization, Efficiency, and Optimization

被引:0
|
作者
Ross, John Brandon [1 ]
机构
[1] Univ Alabama, Huntsville, AL 35899 USA
来源
2013 PROCEEDINGS OF IEEE SOUTHEASTCON | 2013年
关键词
Graphics Processing Unit; GPU; Multi-GPU; Multi-Card; High Performance Computing; General Purpose GPU;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper focuses on the basic techniques that a common programmer can use to utilize multiple consumer level GPUs, commonly available to them at home or through purchase, to assist them in massively parallel computation in their work. It lays out an experimental framework to determine the best and easiest styles of programming for multiple GPUs to use, without actually using the more complex and available NVIDIA multi-GPU templates and techniques.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Comprehensive techniques of multi-GPU memory optimization for deep learning acceleration
    Youngrang Kim
    Jaehwan Lee
    Jik-Soo Kim
    Hyunseung Jei
    Hongchan Roh
    Cluster Computing, 2020, 23 : 2193 - 2204
  • [32] SkePU: A Multi-Backend Skeleton Programming Library for Multi-GPU Systems
    Enmyren, Johan
    Kessler, Christoph W.
    HLPP 2010: PROCEEDINGS OF THE FOURTH INTERNATIONAL WORKSHOP ON HIGH-LEVEL PARALLEL PROGRAMMING AND APPLICATIONS, 2010, : 5 - 14
  • [33] Optimization in the parallelism extraction algorithm with spanning tree on a multi-GPU environment
    Wang, Guyue
    Wada, Koichi
    Yamagiwa, Shinichi
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2019, 14 (06) : 862 - 869
  • [34] Scaling up MapReduce-based Big Data Processing on Multi-GPU systems
    Jiang, Hai
    Chen, Yi
    Qiao, Zhi
    Weng, Tien-Hsiung
    Li, Kuan-Ching
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2015, 18 (01): : 369 - 383
  • [35] Scaling up MapReduce-based Big Data Processing on Multi-GPU systems
    Hai Jiang
    Yi Chen
    Zhi Qiao
    Tien-Hsiung Weng
    Kuan-Ching Li
    Cluster Computing, 2015, 18 : 369 - 383
  • [36] Advances in Multi-GPU Smoothed Particle Hydrodynamics Simulations
    Rustico, Eugenio
    Bilotta, Giuseppe
    Herault, Alexis
    Del Negro, Ciro
    Gallo, Giovanni
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2014, 25 (01) : 43 - 52
  • [37] Simulation of nonlinear signal propagation in multimode fibers on multi-GPU systems
    Brehler, Marius
    Schirwon, Malte
    Krummrich, Peter M.
    Goeddeke, Dominik
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 84
  • [38] sputniPIC: an Implicit Particle-in-Cell Code for Multi-GPU Systems
    Chien, Steven W. D.
    Nylund, Jonas
    Bengtsson, Gabriel
    Peng, Ivy B.
    Podobas, Artur
    Markidis, Stefano
    2020 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2020), 2020, : 149 - 156
  • [39] Efficient Implementation of MrBayes on Multi-GPU
    Bao, Jie
    Xia, Hongju
    Zhou, Jianfu
    Liu, Xiaoguang
    Wang, Gang
    MOLECULAR BIOLOGY AND EVOLUTION, 2013, 30 (06) : 1471 - 1479
  • [40] Parallel Algorithm for Landform Attributes Representation on Multicore and Multi-GPU Systems
    Boratto, Murilo
    Alonso, Pedro
    Ramiro, Carla
    Barreto, Marcos
    Coelho, Leandro
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2012, PT I, 2012, 7333 : 29 - 43