Consumer Level Multi-GPU Systems Utilization, Efficiency, and Optimization

被引:0
|
作者
Ross, John Brandon [1 ]
机构
[1] Univ Alabama, Huntsville, AL 35899 USA
来源
2013 PROCEEDINGS OF IEEE SOUTHEASTCON | 2013年
关键词
Graphics Processing Unit; GPU; Multi-GPU; Multi-Card; High Performance Computing; General Purpose GPU;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper focuses on the basic techniques that a common programmer can use to utilize multiple consumer level GPUs, commonly available to them at home or through purchase, to assist them in massively parallel computation in their work. It lays out an experimental framework to determine the best and easiest styles of programming for multiple GPUs to use, without actually using the more complex and available NVIDIA multi-GPU templates and techniques.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] High-Level Programming of Stencil Computations on Multi-GPU Systems Using the SkelCL Library
    Steuwer, Michel
    Haidl, Michael
    Breuer, Stefan
    Gorlatch, Sergei
    PARALLEL PROCESSING LETTERS, 2014, 24 (03)
  • [22] Combining HW/SW Mechanisms to Improve NUMA Performance of Multi-GPU Systems
    Young, Vinson
    Jaleel, Aamer
    Bolotin, Evgeny
    Ebrahimi, Eiman
    Nellans, David
    Villa, Oreste
    2018 51ST ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2018, : 339 - 351
  • [23] Efficient parallel A* search on multi-GPU system
    He, Xin
    Yao, Yapeng
    Chen, Zhiwen
    Sun, Jianhua
    Chen, Hao
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 123 : 35 - 47
  • [24] MAPREDUCE IMPLEMENTATION WITH MULTI-GPU
    Chen, Yi
    Chen, Su
    Jiang, Hai
    INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE & TECHNOLOGY: PROCEEDINGS, 2012, : 21 - 25
  • [25] Towards a Multi-GPU Implementation of a Seismic Application
    Rigon, Pedro H. C.
    Schussler, Brenda S.
    Padoin, Edson L.
    Lorenzon, Arthur F.
    Carissimi, Alexandre
    Navaux, Philippe O. A.
    HIGH PERFORMANCE COMPUTING, CARLA 2023, 2024, 1887 : 146 - 159
  • [26] Multi-level Clustering on Metric Spaces Using a Multi-GPU Platform
    Barrientos, Ricardo J.
    Gomez, Jose I.
    Tenllado, Christian
    Prieto Matias, Manuel
    Zezula, Pavel
    EURO-PAR 2013 PARALLEL PROCESSING, 2013, 8097 : 216 - 228
  • [27] An adaptive methodology for multi-GPU programming in OpenCL
    Cavalcanti Bueno, Andre Luis
    Rodriguez, Noemi de La Rocque
    Sotelino, Elisa Dominguez
    ENGINEERING COMPUTATIONS, 2017, 34 (04) : 1277 - 1292
  • [28] PARTANS: An Autotuning Framework for Stencil Computation on Multi-GPU Systems
    Lutz, Thibaut
    Fensch, Christian
    Cole, Murray
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2013, 9 (04)
  • [29] Performance Analysis of Parallel FFT on Large Multi-GPU Systems
    Ayala, Alan
    Tomov, Stan
    Stoyanov, Miroslav
    Haidar, Azzam
    Dongarra, Jack
    2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2022), 2022, : 372 - 381
  • [30] Comprehensive techniques of multi-GPU memory optimization for deep learning acceleration
    Kim, Youngrang
    Lee, Jaehwan
    Kim, Jik-Soo
    Jei, Hyunseung
    Roh, Hongchan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2020, 23 (03): : 2193 - 2204