Estimation of the shift parameter in regression models with unknown distribution of the observations

被引:0
|
作者
Fraysse, Philippe [1 ]
机构
[1] Univ Bordeaux 1, Inst Math Bordeaux, CNRS, UNR 5251, F-33405 Talence, France
来源
ELECTRONIC JOURNAL OF STATISTICS | 2014年 / 8卷
关键词
estimation of the shift parameter; asymptotic properties; SHAPE;
D O I
10.1214/14-EJS918
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is devoted to the estimation of the shift parameter in a semiparametric regression model when the distribution of the observation times is unknown. Hence, we propose to use a stochastic algorithm which takes into account the estimation of the distribution of the observation times. We establish the almost sure convergence of our estimator and the asymptotic normality. The main result of the paper is that, with little assumptions on the regularity of the regression function, the asymptotic variance obtained is the same as when the distribution is know In that sense, we improve the recent work of Bercu and Fraysse [1].
引用
收藏
页码:998 / 1028
页数:31
相关论文
共 24 条
  • [11] A weighted least-squares method for parameter estimation in structured models
    Galrinho, Miguel
    Rojas, Cristian
    Hjalmarsson, Hakan
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3322 - 3327
  • [12] Parameter Estimation of Generalized Gamma Distribution Toward SAR Image Processing
    Zhang, Peng
    Li, Beibei
    Boudaren, Mohamed El Yazid
    Yan, Junkun
    Li, Ming
    Wu, Yan
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (05) : 3701 - 3717
  • [13] Fast Shape Parameter Estimation of the Complex Generalized Gaussian Distribution in SAR Images
    Leng, Xiangguang
    Ji, Kefeng
    Zhou, Shilin
    Xing, Xiangwei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (11) : 1933 - 1937
  • [14] A Parameter Dimension-Split Based Asymptotic Regression Estimation Theory for a Multinomial Panel Data Model
    Sutradhar B.C.
    Sankhya A, 2018, 80 (2): : 301 - 329
  • [15] Multi-Dimensional Regression Models for Predicting the Wall Thickness Distribution of Corrugated Pipes
    Albrecht, Hanny
    Roland, Wolfgang
    Fiebig, Christian
    Berger-Weber, Gerald Roman
    POLYMERS, 2022, 14 (17)
  • [16] The bivariate Sinh-Elliptical distribution with applications to Birnbaum-Saunders distribution and associated regression and measurement error models
    Vilca, Filidor
    Balakrishnan, N.
    Zeller, Camila Borelli
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 80 : 1 - 16
  • [17] Least-square estimators in linear regression models under negatively superadditive dependent random observations
    Bertin, Karine
    Torres, Soledad
    Viitasaari, Lauri
    STATISTICS, 2021, 55 (05) : 1018 - 1034
  • [18] Adaptive Estimation of K-Distribution Shape Parameter Based on Fuzzy Statistical Normalization Processing
    He, Xinbiao
    Xu, Yanwei
    Liu, Minggang
    Hao, Chengpeng
    Hou, Chaohuan
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (05) : 4566 - 4577
  • [19] Pairwise Estimation of Multivariate Gaussian Process Models With Replicated Observations: Application to Multivariate Profile Monitoring
    Li, Yongxiang
    Zhou, Qiang
    Huang, Xiaohu
    Zeng, Li
    TECHNOMETRICS, 2018, 60 (01) : 70 - 78
  • [20] EFFICIENT ESTIMATION AND COMPUTATION IN GENERALIZED VARYING COEFFICIENT MODELS WITH UNKNOWN LINK AND VARIANCE FUNCTIONS FOR LARGE-SCALE DATA
    Lin, Huazhen
    Liu, Jiaxin
    Li, Haoqi
    Pan, Lixian
    Li, Yi
    STATISTICA SINICA, 2022, 32 (02) : 847 - 868