Estimation of the shift parameter in regression models with unknown distribution of the observations

被引:0
|
作者
Fraysse, Philippe [1 ]
机构
[1] Univ Bordeaux 1, Inst Math Bordeaux, CNRS, UNR 5251, F-33405 Talence, France
来源
关键词
estimation of the shift parameter; asymptotic properties; SHAPE;
D O I
10.1214/14-EJS918
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is devoted to the estimation of the shift parameter in a semiparametric regression model when the distribution of the observation times is unknown. Hence, we propose to use a stochastic algorithm which takes into account the estimation of the distribution of the observation times. We establish the almost sure convergence of our estimator and the asymptotic normality. The main result of the paper is that, with little assumptions on the regularity of the regression function, the asymptotic variance obtained is the same as when the distribution is know In that sense, we improve the recent work of Bercu and Fraysse [1].
引用
收藏
页码:998 / 1028
页数:31
相关论文
共 50 条
  • [11] PARAMETER ESTIMATION IN MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS
    HOCKING, RR
    SMITH, WB
    TEXAS JOURNAL OF SCIENCE, 1967, 19 (04): : 401 - &
  • [12] A note on parameter estimation for misspecified regression models with heteroskedastic errors
    Long, James P.
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 1464 - 1490
  • [13] Parameter estimation in linear regression models for longitudinal contaminated data
    Qian W.
    Li Y.
    Applied Mathematics-A Journal of Chinese Universities, 2005, 20 (1) : 64 - 74
  • [14] PARAMETER ESTIMATION IN LINEAR REGRESSION MODELS FOR LONGITUDINAL CONTAMINATED DATA
    Qian Weimin Li YumeiDept.of Appl.Math.
    AppliedMathematics:AJournalofChineseUniversities, 2005, (01) : 64 - 74
  • [15] Evaluation of Parameter Estimation Methods for Fitting Spatial Regression Models
    Lu, Junfeng
    Zhang, Lianjun
    FOREST SCIENCE, 2010, 56 (05) : 505 - 514
  • [16] Parameter estimation for Weibull distribution using support vector regression
    Ling, Dan
    Huang, Hong-Zhong
    Miao, Qiang
    Yang, Bo
    DETC2007: PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNOLOGY CONFERENCE AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, 2008, : 445 - 449
  • [17] Identification and estimation of partially linear censored regression models with unknown heteroscedasticity
    Zhang, Zhengyu
    Liu, Bing
    ECONOMETRICS JOURNAL, 2015, 18 (02): : 242 - 273
  • [18] ESTIMATION OF A PARAMETER WHEN THE NUMBER OF UNKNOWN PARAMETERS INCREASES INDEFINITELY WITH THE NUMBER OF OBSERVATIONS
    WALD, A
    ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (02): : 220 - 227
  • [19] Entropy minimization for parameter estimation problems with unknown distribution of the output noise
    Pronzato, L
    Thierry, E
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3993 - 3996
  • [20] Identification of Linear Parameter-Varying Models with Unknown Parameter Dependence Using ε-Support Vector Regression
    Datar, Adwait
    Schulz, Erik
    Werner, Herbert
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 2011 - 2016