Substrate-Induced Photofield Effect in Graphene Phototransistors

被引:6
作者
Butt, Nauman Z. [1 ]
Sarker, Biddut K. [2 ]
Chen, Yong P. [2 ]
Alam, Muhammad Ashraful [3 ]
机构
[1] Lahore Univ Management Sci, Syed Babar Ali Sch Sci & Engn, Dept Elect Engn, Lahore 54792, Pakistan
[2] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[3] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
Electrostatic doping; graphene; photodetector; phototransistor; PHOTODETECTION; ULTRAHIGH; GAS;
D O I
10.1109/TED.2015.2475643
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A single atomic layer of graphene, integrated onto an undoped bulk substrate in a back-gated transistor configuration, demonstrates surprising strong photoconduction, and yet, the physical origin of the photoresponse is not fully understood. Here, we use a detailed computational model to demonstrate that the photoconductivity arises from the electrostatic doping of graphene, induced by the surface accumulation of photogenerated carriers at the graphene/substrate interface. The accumulated charge density depends strongly on the rate of charge transfer between the substrate and the graphene; the suppression of the transfer rate below that of carrier's thermal velocity is an essential prerequisite for a substantial photoinduced doping in the graphene channel under this mechanism. The contact-to-graphene coupling (defined by the ratio of graphene-metal contact capacitance to graphene's quantum capacitance) determines the magnitude of photoinduced doping in graphene at the source/drain contacts. High-performance graphene phototransistors would, therefore, require careful engineering of the graphene-substrate interface and optimization of graphene-metal contacts.
引用
收藏
页码:3734 / 3741
页数:8
相关论文
共 38 条
[1]   Si-rich 6H- and 4H-SiC(0001) 3x3 surface oxidation and initial SiO2/SiC interface formation from 25 to 650°C -: art. no. 165323 [J].
Amy, F ;
Soukiassian, P ;
Hwu, YK ;
Brylinski, C .
PHYSICAL REVIEW B, 2002, 65 (16)
[2]   Substrate Gating of Contact Resistance in Graphene Transistors [J].
Berdebes, Dionisis ;
Low, Tony ;
Sui, Yang ;
Appenzeller, Joerg ;
Lundstrom, Mark S. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (11) :3925-3932
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Hysteretic response of chemical vapor deposition graphene field effect transistors on SiC substrates [J].
Cazalas, Edward ;
Childres, Isaac ;
Majcher, Amanda ;
Chung, Ting-Fung ;
Chen, Yong P. ;
Jovanovic, Igor .
APPLIED PHYSICS LETTERS, 2013, 103 (05)
[6]   Crystalline silicon oxycarbide: Is there a native oxide for silicon carbide? [J].
da Silva, CRS ;
Justo, JF ;
Pereyra, I .
APPLIED PHYSICS LETTERS, 2004, 84 (24) :4845-4847
[7]   Nanoscale device modeling: the Green's function method [J].
Datta, S .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (04) :253-278
[8]   Graphene Field-Effect Transistors on Undoped Semiconductor Substrates for Radiation Detection [J].
Foxe, Michael ;
Lopez, Gabriel ;
Childres, Isaac ;
Jalilian, Romaneh ;
Patil, Amol ;
Roecker, Caleb ;
Boguski, John ;
Jovanovic, Igor ;
Chen, Yong P. .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2012, 11 (03) :581-587
[9]   Increased Responsivity of Suspended Graphene Photodetectors [J].
Freitag, Marcus ;
Low, Tony ;
Avouris, Phaedon .
NANO LETTERS, 2013, 13 (04) :1644-1648
[10]   Chip-integrated ultrafast graphene photodetector with high responsivity [J].
Gan, Xuetao ;
Shiue, Ren-Jye ;
Gao, Yuanda ;
Meric, Inanc ;
Heinz, Tony F. ;
Shepard, Kenneth ;
Hone, James ;
Assefa, Solomon ;
Englund, Dirk .
NATURE PHOTONICS, 2013, 7 (11) :883-887