Electrochemical properties of LaY2Ni9 hydrogen storage alloy, used as an anode in nickel-metal hydride batteries

被引:33
作者
Ben Belgacem, Yassine [1 ]
Khaldi, Chokri [1 ]
Boussami, Sami [1 ]
Lamloumi, Jilani [1 ]
Mathlouthi, Hamadi [1 ]
机构
[1] Univ Tunis, Ecole Super Sci & Tech Tunis, Lab Mecan Mat & Proc, Equipe Hydrures Metall, Tunis 1008, Tunisia
关键词
Electrochemical properties; Hydrogen reactions; Activation energy; Thermodynamics; TEMPERATURE; LA; SUBSTITUTION; DISCHARGE; ELECTRODE; CAPACITY; BEHAVIOR; MG; CO;
D O I
10.1007/s10008-014-2448-5
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical properties of LaY2Ni9 alloy used as an anode in nickel-metal hydride batteries were investigated at ambient and at different temperatures. Several techniques, such as the galvanostatic charging and discharging, the constant potential discharge, and the potentiodynamic polarization, were applied to characterize these electrochemical properties. The discharge capacity of the LaY2Ni9 alloy increases to reach 258 mAh g(-1) after 5 cycles and decreases to 140 mAh g(-1) after 100 cycles then stabilizes around this same value indicating good cycling held. The hydrogen diffusion coefficient D (H) in the bulky alloy is estimated to be (1.02 +/- 0.11) x 10(-11) cm(2) s(-1) correlated with the good stability of electrochemical capacity after 100 cycles. The evolution of the ratio and the corrosion current density and potential are correlated with the evolution of the electrochemical capacity during the activation and for a long cycling. The enthalpy, the entropy, and the apparent activation energy of the LaY2Ni9 hydride formation are evaluated. The calculated results show that the enthalpy change, the entropy change, and the activation energy are (-42.64 +/- 1.08), (56.85 +/- 2.11), and (14.84 +/- 0.35) kJ mol(-1), respectively.
引用
收藏
页码:2019 / 2026
页数:8
相关论文
共 40 条
[1]  
Ayari M., 2003, THESIS FS TUNIS
[2]   An electrochemical study of new La1-xCexY2Ni9 (0 ≤ x ≤ 1) hydrogen storage alloys [J].
Baddour-Hadjean, R ;
Meyer, L ;
Pereira-Ramos, JP ;
Latroche, M ;
Percheron-Guegan, A .
ELECTROCHIMICA ACTA, 2001, 46 (15) :2385-2393
[3]   Effect of substitution of Mm for La on the electrochemical properties of the LaNi3.55Mn0.4Al0.3Co0.75 compound [J].
Ben Moussa, M ;
Abdellaoui, M ;
Khaldi, C ;
Mathlouthi, H ;
Lamloumi, J ;
Guégan, AP .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 399 (1-2) :264-269
[4]   Electrochemical study of LaNi3.55Mn0.4Al0.3Fe0.75 as negative electrode in alkaline secondary batteries [J].
Boussami, S. ;
Khaldi, C. ;
Lamloumi, J. ;
Mathlouthi, H. ;
Takenouti, H. .
ELECTROCHIMICA ACTA, 2012, 69 :203-208
[5]   Design and fabrication of a MEMS-based metal hydride/air accumulator for energy harvesting [J].
Bretthauer, C. ;
Mueller, C. ;
Reinecke, H. .
ELECTROCHIMICA ACTA, 2009, 54 (25) :6094-6098
[6]   STRUCTURAL RELATIONSHIPS IN RARE EARTH-TRANSITION METAL-HYDRIDES [J].
DUNLAP, BD ;
VICCARO, PJ ;
SHENOY, GK .
JOURNAL OF THE LESS-COMMON METALS, 1980, 74 (01) :75-79
[7]   Thermodynamical properties of La-Ni-T (T = Mg, Bi and Sb) hydrogen storage systems [J].
Giza, K. ;
Iwasieczko, W. ;
Pavlyuk, V. V. ;
Bala, H. ;
Drulis, H. .
JOURNAL OF POWER SOURCES, 2008, 181 (01) :38-40
[8]   Temperature- and pressure-induced structural transitions in rare-earth-deficient R(1-x)Ni(2) (R=Y,Sm,Gd,Tb) Laves phases [J].
Gratz, E ;
Kottar, A ;
Lindbaum, A ;
Mantler, M ;
Latroche, M ;
PaulBoncour, V ;
Acet, M ;
Barner, C ;
Holzapfel, WB ;
Pacheco, V ;
Yvon, K .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (43) :8351-8361
[9]  
Hong k, 1991, US patent, Patent No. 5006328
[10]   Enthalpy change (ΔH0) and entropy change (ΔS0) measurement of CeMn1-xAl1-xNi2x (x=0.00, 0.25, 0.50 and 0.75) hydrides by electrochemical P-C-T curve [J].
Hou, Chun-ping ;
Zhao, Min-shou ;
Li, Jia ;
Huang, Liang ;
Wang, Yan-zhi ;
Yue, Min .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (14) :3762-3766