Enhanced Proton Conductivity from Phosphoric Acid-Incorporated 3D Polyacrylamide-Graft-Starch Hydrogel Materials for High-Temperature Proton Exchange Membranes

被引:10
作者
Qin, Qi [1 ]
Tang, Qunwei [1 ]
He, Benlin [1 ]
Chen, Haiyan [1 ]
Yuan, Shuangshuang [1 ]
Wang, Xin [1 ]
机构
[1] Ocean Univ China, Inst Mat Sci & Engn, Qingdao 266100, Shandong, Peoples R China
基金
国家教育部博士点专项基金资助;
关键词
batteries; colloids; composites; crosslinking; fuel cells; functionalization of polymers; H3PO4; FRAMEWORKS; TRANSPORT; ALCOHOL);
D O I
10.1002/app.40622
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
To enhance anhydrous proton conductivity of high-temperature proton exchange membranes (PEMs), we report here the realization of H3PO4-imbibed three-dimensional (3D) polyacrylamide-graft-starch (PAAm-g-starch) hydrogel materials as high-temperature PEMs using the unique absorption and retention of crosslinked PAAm-g-starch to concentrated H3PO4 aqueous solution. The 3D framework of PAAm-g-starch matrix provides enormous space to keep H3PO4 into the porous structure, which can be controlled by adjusting crosslinking agent and initiator dosages. Results show that the H3PO4 loading and therefore the proton conductivities of the membranes are significantly enhanced by increasing the amount of crosslinking agent and initiator dosages. Proton conductivities as high as 0.109 S cm(-1) at 180 degrees C under fully anhydrous state are recorded. The high conductivities at high temperatures in combination with the simple preparation, low cost, and scalable matrices demonstrate the potential use of PAAm-g-starch hydrogel materials in high-temperature proton exchange membrane fuel cells. (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页数:8
相关论文
共 27 条
  • [11] Proton-conducting hydrogel membranes
    Przyluski, J
    Poltarzewski, Z
    Wieczorek, W
    [J]. POLYMER, 1998, 39 (18) : 4343 - 4347
  • [12] Incorporation of H3PO4 into three-dimensional polyacrylamide-graft-starch hydrogel frameworks for robust high-temperature proton exchange membrane fuel cells
    Qin, Qi
    Tang, Qunwei
    Li, Qinghua
    He, Benlin
    Chen, Haiyan
    Wang, Xin
    Yang, Peizhi
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (09) : 4447 - 4458
  • [13] Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte
    Seland, F.
    Berning, T.
    Borresen, B.
    Tunold, R.
    [J]. JOURNAL OF POWER SOURCES, 2006, 160 (01) : 27 - 36
  • [14] Role of Nanocomposite Hydrogel Morphology in the Electrophoretic Separation of Biomolecules: A Review
    Simhadri, Jyothirmai J.
    Stretz, Holly A.
    Oyanader, Mario
    Arce, Pedro E.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (23) : 11866 - 11877
  • [15] Materials for fuel-cell technologies
    Steele, BCH
    Heinzel, A
    [J]. NATURE, 2001, 414 (6861) : 345 - 352
  • [16] Proton conducting gel H3PO4 electrolytes
    Stevens, JR
    Wieczorek, W
    Raducha, D
    Jeffrey, KR
    [J]. SOLID STATE IONICS, 1997, 97 (1-4) : 347 - 358
  • [17] Preparation and water absorbency of a novel poly(acrylate-co-acrylamide)/vermiculite superabsorbent composite
    Tang, Qunwei
    Lin, Jianming
    Wu, Jihuai
    Xu, Yuwen
    Zhang, Chuanjuan
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 104 (02) : 735 - 739
  • [18] Phosphoric acid-imbibed three-dimensional polyacrylamide/poly(vinyl alcohol) hydrogel as a new class of high-temperature proton exchange membrane
    Tang, Qunwei
    Huang, Kevin
    Qian, Guoqing
    Benicewicz, Brian C.
    [J]. JOURNAL OF POWER SOURCES, 2013, 229 : 36 - 41
  • [19] Enhanced proton conductivity from phosphoric acid-imbibed crosslinked 3D polyacrylamide frameworks for high-temperature proton exchange membranes
    Tang, Qunwei
    Cai, Hongyuan
    Yuan, Shuangshuang
    Wang, Xin
    Yuan, Weiqiang
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (02) : 1016 - 1026
  • [20] High-temperature proton exchange membranes from microporous polyacrylamide caged phosphoric acid
    Tang, Qunwei
    Yuan, Shuangshuang
    Cai, Hongyuan
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (03) : 630 - 636