On the KO -groups of toric manifolds

被引:0
|
作者
Cai, Li [1 ]
Choi, Suyoung [2 ]
Park, Hanchul [3 ]
机构
[1] Xian Jiaotong Liverpool Univ, Dept Math Sci, Suzhou, Peoples R China
[2] Ajou Univ, Dept Math, Suwon, South Korea
[3] Jeju Natl Univ, Dept Math Educ, Jeju Si, South Korea
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2020年 / 20卷 / 05期
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
ISOSPECTRAL MANIFOLDS; OPERATIONS;
D O I
10.2140/agt.2020.20.2589
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the real topological K-groups of a toric manifold M, which turns out to be closely related to the topology of the small cover M-R, the fixed points under the canonical conjugation on M. Following the work of Bahri and Bendersky (2000), we give an explicit formula for the KO -groups of toric manifolds, and then we characterize the two extreme classes of toric manifolds according to their mod 2 cohomology groups as A(1)-modules.
引用
收藏
页码:2589 / 2607
页数:19
相关论文
共 50 条
  • [41] The J-flow on Toric Manifolds
    Yao, Yi
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (10) : 1582 - 1592
  • [42] On toric locally conformally Kahler manifolds
    Madani, Farid
    Moroianu, Andrei
    Pilca, Mihaela
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2017, 51 (04) : 401 - 417
  • [43] A note on the Gromov width of toric manifolds
    Bonala, Narasimha Chary
    Cupit-Foutou, Stephanie
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 199
  • [44] Gauge theories on compact toric manifolds
    Bonelli, Giulio
    Fucito, Francesco
    Morales, Jose Francisco
    Ronzani, Massimiliano
    Sysoeva, Ekaterina
    Tanzini, Alessandro
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (03)
  • [45] On displaceability of pre-Lagrangian toric fibers in contact toric manifolds
    Marinkovic, A.
    Pabiniak, M.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (14)
  • [46] Toric nearly Kähler manifolds
    Andrei Moroianu
    Paul-Andi Nagy
    Annals of Global Analysis and Geometry, 2019, 55 : 703 - 717
  • [47] LCK metrics on toric LCS manifolds
    Istrati, Nicolina
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 149
  • [48] Toric origami structures on quasitoric manifolds
    Anton A. Ayzenberg
    Mikiya Masuda
    Seonjeong Park
    Haozhi Zeng
    Proceedings of the Steklov Institute of Mathematics, 2015, 288 : 10 - 28
  • [49] TORIC TOPOLOGY OF THE COMPLEX GRASSMANN MANIFOLDS
    Buchstaber, Victor M.
    Terzic, Svjetlana
    MOSCOW MATHEMATICAL JOURNAL, 2019, 19 (03) : 397 - 463
  • [50] The J-flow on Toric Manifolds
    Yi YAO
    Acta Mathematica Sinica,English Series, 2015, (10) : 1582 - 1592