Strong formulations of robust mixed 0-1 programming

被引:41
作者
Atamtuerk, Alper [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
robust optimization; polyhedra; modeling; computation;
D O I
10.1007/s10107-006-0709-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce strong formulations for robust mixed 0-1 programming with uncertain objective coefficients. We focus on a polytopic uncertainty set described by a ``budget constraint'' for allowed uncertainty in the objective coefficients. We show that for a robust 0-1 problem, there is an alpha-tight linear programming formulation with size polynomial in the size of an alpha-tight linear programming formulation for the nominal 0-1 problem. We give extensions to robust mixed 0-1 programming and present computational experiments with the proposed formulations.
引用
收藏
页码:235 / 250
页数:16
相关论文
共 20 条
[1]  
ATAMTURK A, 2004, BCOL0403 U CAL BERKL
[2]   On the complexity of a class of combinatorial optimization problems with uncertainty [J].
Averbakh, I .
MATHEMATICAL PROGRAMMING, 2001, 90 (02) :263-272
[3]  
Balas Egon., 1979, ANN OFDISCRETE MATH, V5, P3, DOI DOI 10.1016/S0167-5060(08)70342-X
[4]   Robust convex optimization [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (04) :769-805
[5]   Adjustable robust solutions of uncertain linear programs [J].
Ben-Tal, A ;
Goryashko, A ;
Guslitzer, E ;
Nemirovski, A .
MATHEMATICAL PROGRAMMING, 2004, 99 (02) :351-376
[6]   Robust solutions of uncertain quadratic and conic-quadratic problems [J].
Ben-Tal, A ;
Nemirovski, A ;
Roos, C .
SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (02) :535-560
[7]  
Bertsimas D, 2004, LECT NOTES COMPUT SC, V3064, P86
[8]   Robust linear optimization under general norms [J].
Bertsimas, D ;
Pachamanova, D ;
Sim, M .
OPERATIONS RESEARCH LETTERS, 2004, 32 (06) :510-516
[9]   Robust discrete optimization and network flows [J].
Bertsimas, D ;
Sim, M .
MATHEMATICAL PROGRAMMING, 2003, 98 (1-3) :49-71
[10]  
BERTSIMAS D, 2004, ROBUST CONIC OPTIMIZ