Clustering of High Dimensional Longitudinal Imaging Data

被引:1
作者
Lee, Seonjoo [1 ]
Zipunnikov, Vadim [3 ]
Shiee, Navid [2 ]
Crainiceanu, Ciprian [3 ]
Caffo, Brian S. [3 ]
Pham, Dzung L. [1 ]
机构
[1] Henry M Jackson Fdn, Ctr Neurosicence & Regenerat Med, Bethesda, MD 20817 USA
[2] Johns Hopkins Univ, Dept Biostat, Baltimore, MD 21218 USA
[3] Amazon com, Seattle, WA USA
来源
2013 3RD INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING (PRNI 2013) | 2013年
关键词
cluster analysis; ultra high dimensional longitudinal data; longitudinal functional principal component analysis (LFPCA); regional analysis of volumes examined in normalized space (RAVENS);
D O I
10.1109/PRNI.2013.18
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the study of brain disease processes and aging, longitudinal imaging studies are becoming increasingly commonplace. Indeed, there are hundreds of studies collecting multi-sequence multi-modality brain images at multiple time points on hundreds of subjects over many years. A fundamental problem in this context is how to classify subjects according to their baseline and longitudinal changes in the presence of strong spatio-temporal biological and technological measurement error. We propose a fast and scalable clustering approach by defining a metric between latent trajectories of brain images. Methods were motivated by and applied to a longitudinal voxel-based morphometry study of multiple sclerosis. Results indicate that there are two distinct patterns of ventricular change that are associated with clinical outcomes.
引用
收藏
页码:33 / 36
页数:4
相关论文
共 10 条
[1]  
[Anonymous], 1992, Australian New Zealand Journal of Statistics
[2]   The optimal template effect in hippocampus studies of diseased populations [J].
Avants, Brian B. ;
Yushkevich, Paul ;
Pluta, John ;
Minkoff, David ;
Korczykowski, Marc ;
Detre, John ;
Gee, James C. .
NEUROIMAGE, 2010, 49 (03) :2457-2466
[3]  
Greven S, 2011, CONTRIB STAT, P149
[4]   Clustering High-Dimensional Data: A Survey on Subspace Clustering, Pattern-Based Clustering, and Correlation Clustering [J].
Kriegel, Hans-Peter ;
Kroeger, Peer ;
Zimek, Arthur .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2009, 3 (01)
[5]   Multilevel Functional Clustering Analysis [J].
Serban, Nicoleta ;
Jiang, Huijing .
BIOMETRICS, 2012, 68 (03) :805-814
[6]   HAMMER: Hierarchical attribute matching mechanism for elastic registration [J].
Shen, DG ;
Davatzikos, C .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (11) :1421-1439
[7]   A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions [J].
Shiee, Navid ;
Bazin, Pierre-Louis ;
Ozturk, Arzu ;
Reich, Daniel S. ;
Calabresi, Peter A. ;
Pham, Dzung L. .
NEUROIMAGE, 2010, 49 (02) :1524-1535
[8]   Estimating the number of clusters in a data set via the gap statistic [J].
Tibshirani, R ;
Walther, G ;
Hastie, T .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :411-423
[9]   A linear mixed-effects model with heterogeneity in the random-effects population [J].
Verbeke, G ;
Lesaffre, E .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) :217-221
[10]  
Zipunnikov V., 2012, DEP BIOSTATISTICS WO, P234