3D GaN nanoarchitecture for field-effect transistors

被引:40
作者
Fatahilah, Muhammad Fahlesa [1 ,2 ]
Strempel, Klaas [1 ,2 ]
Yu, Feng [1 ,2 ]
Vodapally, Sindhuri [1 ,2 ]
Waag, Andreas [1 ,2 ]
Wasisto, Hutomo Suryo [1 ,2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Semicond Technol IHT, Hans Sommer Str 66, D-38106 Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Lab Emerging Nanometrol LENA, Langer Kamp 6, D-38106 Braunschweig, Germany
关键词
GaN; 3D architecture; Nanowire; Nanofin; Nanoelectronics; Field-effect transistor (FET); Vertical transistor; Lateral transistor; HIGH-THRESHOLD VOLTAGE; SELECTIVE-AREA GROWTH; ALGAN/GAN HEMTS; CURRENT COLLAPSE; PERFORMANCE ANALYSIS; NANOWIRE CHANNEL; R-ON; SILICON; MODE; MOSFET;
D O I
10.1016/j.mne.2019.04.001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The three-dimensionality of 3D GaN field-effect transistors (FETs) provides them with unique advantages compared to their planar counterparts, introducing a promising path towards future FETs beyond Moore's law. Similar to today's Si processor technology, 3D GaN FETs offer multi-gate structures that provide excellent electrostatic control over the channel and enable very low subthreshold swing values close to the theoretical limit. Various concepts have been demonstrated, including both lateral and vertical devices with GaN nanowire (NW) or nanofin (NF) geometries. Outstanding transport properties were achieved with laterally contacted NWs that were grown in a bottom-up approach and transferred onto an insulating substrate. For higher power application, vertical FETs based on regular arrays of GaN nanostructures are particularly promising due to their parallel integration capability and large sidewall surfaces, which can be utilized as channel area. In this paper, we review the current status of 3D GaN FETs and discuss their concepts, fabrication techniques, and performances. In addition to the potential benefits, reliability issues and difficulties that may arise in complex 3D processing are discussed, which need to be tackled to pave the way for future switching applications.
引用
收藏
页码:59 / 81
页数:23
相关论文
共 151 条
[1]   Electron transport characteristics of GaN for high temperature device modeling [J].
Albrecht, JD ;
Wang, RP ;
Ruden, PP ;
Farahmand, M ;
Brennan, KF .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (09) :4777-4781
[2]   The 2018 GaN power electronics roadmap [J].
Amano, H. ;
Baines, Y. ;
Beam, E. ;
Borga, Matteo ;
Bouchet, T. ;
Chalker, Paul R. ;
Charles, M. ;
Chen, Kevin J. ;
Chowdhury, Nadim ;
Chu, Rongming ;
De Santi, Carlo ;
De Souza, Maria Merlyne ;
Decoutere, Stefaan ;
Di Cioccio, L. ;
Eckardt, Bernd ;
Egawa, Takashi ;
Fay, P. ;
Freedsman, Joseph J. ;
Guido, L. ;
Haeberlen, Oliver ;
Haynes, Geoff ;
Heckel, Thomas ;
Hemakumara, Dilini ;
Houston, Peter ;
Hu, Jie ;
Hua, Mengyuan ;
Huang, Qingyun ;
Huang, Alex ;
Jiang, Sheng ;
Kawai, H. ;
Kinzer, Dan ;
Kuball, Martin ;
Kumar, Ashwani ;
Lee, Kean Boon ;
Li, Xu ;
Marcon, Denis ;
Maerz, Martin ;
McCarthy, R. ;
Meneghesso, Gaudenzio ;
Meneghini, Matteo ;
Morvan, E. ;
Nakajima, A. ;
Narayanan, E. M. S. ;
Oliver, Stephen ;
Palacios, Tomas ;
Piedra, Daniel ;
Plissonnier, M. ;
Reddy, R. ;
Sun, Min ;
Thayne, Iain .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (16)
[3]  
Arulkumaran S, 2014, INT EL DEVICES MEET
[4]   Temperature Measurement of Power Semiconductor Devices by Thermo-Sensitive Electrical Parameters-A Review [J].
Avenas, Yvan ;
Dupont, Laurent ;
Khatir, Zoubir .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2012, 27 (06) :3081-3092
[5]   Top-down fabrication of AlGaN/GaN nanoribbons [J].
Azize, M. ;
Palacios, T. .
APPLIED PHYSICS LETTERS, 2011, 98 (04)
[6]   Mesocrystalline materials and the involvement of oriented attachment - a review [J].
Bahrig, Lydia ;
Hickey, Stephen G. ;
Eychmueller, Alexander .
CRYSTENGCOMM, 2014, 16 (40) :9408-9424
[7]   Analytical Model for the Threshold Voltage of p-(Al) GaN High-Electron-Mobility Transistors [J].
Bakeroot, Benoit ;
Stockman, Arno ;
Posthuma, Niels ;
Stoffels, Steve ;
Decoutere, Stefaan .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (01) :79-86
[8]   Gallium nitride devices for power electronic applications [J].
Baliga, B. Jayant .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (07)
[9]   POWER SEMICONDUCTOR-DEVICE FIGURE OF MERIT FOR HIGH-FREQUENCY APPLICATIONS [J].
BALIGA, BJ .
IEEE ELECTRON DEVICE LETTERS, 1989, 10 (10) :455-457
[10]   Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks [J].
Bengoechea-Encabo, A. ;
Barbagini, F. ;
Fernandez-Garrido, S. ;
Grandal, J. ;
Ristic, J. ;
Sanchez-Garcia, M. A. ;
Calleja, E. ;
Jahn, U. ;
Luna, E. ;
Trampert, A. .
JOURNAL OF CRYSTAL GROWTH, 2011, 325 (01) :89-92