Coarse-to-fine Animal Pose and Shape Estimation

被引:0
|
作者
Li, Chen [1 ]
Lee, Gim Hee [1 ]
机构
[1] Natl Univ Singapore, Dept Comp Sci, Singapore, Singapore
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021) | 2021年 / 34卷
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most existing animal pose and shape estimation approaches reconstruct animal meshes with a parametric SMAL model. This is because the low-dimensional pose and shape parameters of the SMAL model makes it easier for deep networks to learn the high-dimensional animal meshes. However, the SMAL model is learned from scans of toy animals with limited pose and shape variations, and thus may not be able to represent highly varying real animals well. This may result in poor fittings of the estimated meshes to the 2D evidences, e.g. 2D keypoints or silhouettes. To mitigate this problem, we propose a coarse-to-fine approach to reconstruct 3D animal mesh from a single image. The coarse estimation stage first estimates the pose, shape and translation parameters of the SMAL model. The estimated meshes are then used as a starting point by a graph convolutional network (GCN) to predict a per-vertex deformation in the refinement stage. This combination of SMAL-based and vertex-based representations benefits from both parametric and non-parametric representations. We design our mesh refinement GCN (MRGCN) as an encoderdecoder structure with hierarchical feature representations to overcome the limited receptive field of traditional GCNs. Moreover, we observe that the global image feature used by existing animal mesh reconstruction works is unable to capture detailed shape information for mesh refinement. We thus introduce a local feature extractor to retrieve a vertex-level feature and use it together with the global feature as the input of the MRGCN. We test our approach on the StanfordExtra dataset and achieve state-of-the-art results. Furthermore, we test the generalization capacity of our approach on the Animal Pose and BADJA datasets. Our code is available at the project website(1).
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Similarity invariant partial shape matching using coarse-to-fine strategy
    Zhang, Xinfeng
    JOURNAL OF ELECTRONIC IMAGING, 2014, 23 (05)
  • [42] 'Coarse-to-fine' cyclopean processing
    Popple, AV
    Findlay, JM
    PERCEPTION, 1999, 28 (02) : 155 - 165
  • [43] Coarse-to-fine face detection
    Fleuret, F
    Geman, D
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2001, 41 (1-2) : 85 - 107
  • [44] Coarse-to-fine manifold learning
    Castro, R
    Willett, R
    Nowak, R
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING SPECIAL SESSIONS, 2004, : 992 - 995
  • [45] Coarse-to-Fine Grained Classification
    Huo, Yuqi
    Lu, Yao
    Niu, Yulei
    Lu, Zhiwu
    Wen, Ji-Rong
    PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, : 1033 - 1036
  • [46] Coarse-to-fine dynamic programming
    Raphael, C
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (12) : 1379 - 1390
  • [47] Coarse-to-Fine Face Detection
    Francois Fleuret
    Donald Geman
    International Journal of Computer Vision, 2001, 41 : 85 - 107
  • [48] Coarse-to-Fine Segmentation With Shape-Tailored Continuum Scale Spaces
    Khan, Naeemullah
    Hong, Byung-Woo
    Yezzi, Anthony
    Sundaramoorthi, Ganesh
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1733 - 1742
  • [49] Coarse-to-Fine Nutrition Prediction
    Wang, Binglu
    Bu, Tianci
    Hu, Zaiyi
    Yang, Le
    Zhao, Yongqiang
    Li, Xuelong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 (26) : 3651 - 3662
  • [50] ON THE COARSE-TO-FINE STRATEGY IN STEREOMATCHING
    PRAZDNY, K
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1987, 25 (02) : 92 - 94