Some new oscillation results for linear Hamiltonian systems

被引:12
作者
Li, Lianzhong [1 ,2 ]
Meng, Fanwei [1 ]
Zheng, Zhaowen [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[2] Taishan Coll, Dept Math & Syst Sci, Tai An 271021, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Oscillation; Linear Hamiltonian system; Positive linear functional; Integral average; General weighted function; 2ND-ORDER DIFFERENTIAL-SYSTEMS; CRITERIA;
D O I
10.1016/j.amc.2008.11.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For linear matrix Hamiltonian systems, we obtain some new oscillation results without the assumption that has been required before, the results are independent and have improved some previous results to a great extent. The main tool used is the standard integral averaging technique. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 17 条
[1]  
BULTLER GJ, 1986, J MATH ANAL APPL, V115, P470
[2]  
BULTLER GJ, 1987, T AM MATH SOC, V303, P263
[3]  
BULTLER GJ, 1986, SIAM J MATH ANAL, V17, P19
[4]   WEIGHTED MEANS AND OSCILLATION CONDITIONS FOR 2ND-ORDER MATRIX DIFFERENTIAL-EQUATIONS [J].
BYERS, R ;
HARRIS, BJ ;
KWONG, MK .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 61 (02) :164-177
[5]  
Chen SZ, 2003, COMPUT MATH APPL, V46, P855, DOI [10.1016/S0898-1221(03)90148-9, 10.1016/S0898-1221(03)00291-8]
[6]   KAMENEV TYPE THEOREMS FOR 2ND-ORDER MATRIX DIFFERENTIAL-SYSTEMS [J].
ERBE, LH ;
KONG, QK ;
RUAN, SG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (04) :957-962
[7]   Oscillation criteria for linear matrix Hamiltonian systems [J].
Kumari, IS ;
Umamaheswaram, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 165 (01) :174-198
[8]   OSCILLATION OF LINEAR 2ND-ORDER DIFFERENTIAL-SYSTEMS [J].
KWONG, MK ;
KAPER, HG ;
AKIYAMA, K ;
MINGARELLI, AB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 91 (01) :85-91
[9]   OSCILLATION OF 2-DIMENSIONAL LINEAR 2ND-ORDER DIFFERENTIAL-SYSTEMS [J].
KWONG, MK ;
KAPER, HG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 56 (02) :195-205
[10]   Oscillation results for linear Hamiltonian systems [J].
Meng, FW .
APPLIED MATHEMATICS AND COMPUTATION, 2002, 131 (2-3) :357-372