TORC2 Regulates Hepatic Insulin Signaling via a Mammalian Phosphatidic Acid Phosphatase, LIPIN1

被引:71
|
作者
Ryu, Dongryeol [1 ]
Oh, Kyoung-Jin [1 ]
Jo, Hee-Yeon [1 ]
Hedrick, Susan [2 ]
Kim, Yo-Na [3 ]
Hwang, Yu-Jin [3 ]
Park, Tae-Sik [3 ]
Han, Joong-Soo [5 ,6 ]
Choi, Cheol Soo [3 ,4 ]
Montminy, Marc [2 ]
Koo, Seung-Hoi [1 ]
机构
[1] Sungkyunkwan Univ, Sch Med, Dept Mol Cell Biol, Suwon 440746, Gyeonggi Do, South Korea
[2] Salk Inst Biol Studies, Peptide Biol Labs, La Jolla, CA 92037 USA
[3] Gachon Univ Med & Sci, Gil Med Ctr, Lee Gil Ya Canc & Diabet Inst, Inchon 405760, South Korea
[4] Gachon Univ Med & Sci, Gil Med Ctr, Div Endocrinol, Inchon 405760, South Korea
[5] Hanyang Univ, Coll Med, Inst Biomed Sci, Seoul 133791, South Korea
[6] Hanyang Univ, Coll Med, Dept Biochem & Mol Biol, Seoul 133791, South Korea
关键词
CREB COACTIVATOR TORC2; FATTY LIVER-DISEASE; GLUCOSE-METABOLISM; IN-VIVO; RESISTANCE; EXPRESSION; PROTEIN; MICE; SENSITIVITY; STEATOSIS;
D O I
10.1016/j.cmet.2009.01.007
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
TORC2 is a major transcriptional coactivator for hepatic glucose production. Insulin impedes gluconeogenesis by inhibiting TORC2 via SIK2-dependent phosphorylation at Ser171. Interruption of this process greatly perturbs hepatic glucose metabolism, thus promoting hyperglycemia in rodents. Here, we show that hyperactivation of TORC2 would exacerbate insulin resistance by enhancing expression of LIPIN1, a mammalian phosphatidic acid phosphatase for diacylglycerol (DAG) synthesis. Diet-induced or genetic obesity increases LIPIN1 expression in mouse liver, and TORC2 is responsible for its transcriptional activation. While overexpression of LIPIN1 disturbs hepatic insulin signaling, knockdown of LIPIN1 ameliorates hyperglycemia and insulin resistance by reducing DAG and PKC epsilon activity in db/db mice. Finally, TORC2-mediated insulin resistance is partially rescued by concomitant knockdown of LIPIN1, confirming the critical role of LIPIN1 in the perturbation of hepatic insulin signaling. These data propose that dysregulation of TORC2 would further exaggerate insulin resistance and promote type 2 diabetes in a LIPIN1-dependent manner.
引用
收藏
页码:240 / 251
页数:12
相关论文
共 50 条
  • [31] Phosphatase, Mg2+/Mn2+dependent 1B regulates the hematopoietic stem cell homeostasis via the Wnt/13-catenin signaling
    Lu, Zhiyuan
    Yu, Hanzhi
    Li, Yanxia
    Xu, Guangsen
    Li, Xiaoxun
    Liu, Yongjun
    Shen, Yuemao
    Cai, Zhigang
    Zhao, Baobing
    HAEMATOLOGICA, 2024, 109 (07) : 2144 - 2156
  • [32] Membrane localization of Src homology 2-containing inositol 5′-phosphatase 2 via Shc association is required for the negative regulation of insulin signaling in Rat1 fibroblasts overexpressing insulin receptors
    Ishihara, H
    Sasaoka, T
    Ishiki, M
    Wada, T
    Hori, H
    Kagawa, S
    Kobayashi, M
    MOLECULAR ENDOCRINOLOGY, 2002, 16 (10) : 2371 - 2381
  • [33] PKCδ regulates upstream insulin receptor (IR) signaling to P13-kinase via insulin receptor substrate-2 but not insulin substrate-1 in primary cultures of rat skeletal muscle
    Sampson, SR
    Alt, A
    Bak, A
    Tennenbaum, T
    Braiman, L
    DIABETES, 2002, 51 : A324 - A324
  • [34] Autocrine transforming growth factor beta signaling regulates extracellular signal-regulated kinase 1/2 phosphorylation via modulation of protein phosphatase 2A expression in scleroderma fibroblasts
    Samuel, Glady H.
    Bujor, Andreea M.
    Nakerakanti, Sashidhar S.
    Hant, Faye N.
    Trojanowska, Maria
    FIBROGENESIS & TISSUE REPAIR, 2010, 3
  • [35] Hepatic serum- and glucocorticoid-regulated protein kinase 1 (SGK1) regulates insulin sensitivity in mice via extracellular-signal-regulated kinase 1/2 (ERK1/2)
    Liu, Hao
    Yu, Junjie
    Xia, Tingting
    Xiao, Yuzhong
    Zhang, Qian
    Liu, Bin
    Guo, Yajie
    Deng, Jiali
    Deng, Yalan
    Chen, Shanghai
    Naray-Fejes-Toth, Aniko
    Fejes-Toth, Geza
    Guo, Feifan
    BIOCHEMICAL JOURNAL, 2014, 464 : 281 - 289
  • [36] Effect of Shenzhu Tiaopi granule () on hepatic insulin resistance in diabetic Goto-Kakizakirats via liver kinase B1/adenosine 5′-monophosphate/mammalian target of rapamycin signaling pathway
    Yin Yundong
    Fang Zhaohui
    Wu Yuanyuan
    You Liangzhen
    JOURNAL OF TRADITIONAL CHINESE MEDICINE, 2021, 41 (01) : 107 - 116
  • [37] Interaction of Scaffolding Adaptor Protein Gab1 with Tyrosine Phosphatase SHP2 Negatively Regulates IGF-I-Dependent Myogenic Differentiation via ERK1/2 Signaling Pathway
    Nakaoka, Yoshikazu
    Koyama, Tatsuya
    Okamoto, Kitaro
    Shioyama, Wataru
    Nishida, Keigo
    Fujio, Yasushi
    Hirano, Toshio
    Mochizuki, Naoki
    CIRCULATION RESEARCH, 2008, 103 (05) : E59 - E59
  • [38] Interaction of scaffolding adaptor protein Gab1 with tyrosine phosphatase SHP2 negatively regulates IGF-I-dependent myogenic differentiation via the ERK1/2 signaling pathway
    Koyama, Tatsuya
    Nakaoka, Yoshikazu
    Fujio, Yasushi
    Hirota, Hisao
    Nishida, Keigo
    Sugiyama, Shoko
    Okamoto, Kitaro
    Yamauchi-Takihara, Keiko
    Yoshimura, Michihiro
    Mochizuki, Seibu
    Hori, Masatsugu
    Hiran, Toshio
    Mochizuki, Naoki
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (35) : 24234 - 24244
  • [39] PAQR3 regulates phosphorylation of FoxO1 in insulin-resistant HepG2 cells via NF-κB signaling pathway
    Chen, Lihao
    Sun, Xiaohong
    Xiao, Haiming
    Xu, Futian
    Yang, Yan
    Lin, Zeyuan
    Chen, Zhiquan
    Quan, Shijian
    Huang, Heqing
    EXPERIMENTAL CELL RESEARCH, 2019, 381 (02) : 301 - 310
  • [40] Protein phosphatase 2A regulates bim expression via the Akt/FKHRL1 signaling pathway in amyloid-β peptide-induced cerebrovascular endothelial cell death
    Yin, KJ
    Hsu, CY
    Hu, XY
    Chen, H
    Chen, SW
    Xu, J
    Lee, JM
    JOURNAL OF NEUROSCIENCE, 2006, 26 (08): : 2290 - 2299