NiOOH Exfoliation-Free Nickel Octahedra as Highly Active and Durable Electrocatalysts Toward the Oxygen Evolution Reaction in an Alkaline Electrolyte

被引:78
作者
Kim, Byeongyoon [1 ,2 ]
Oh, Aram [3 ]
Kabiraz, Mrinal Kanti [4 ,5 ]
Hong, Youngmin [4 ,5 ]
Joo, Jinwhan [1 ,2 ]
Baik, Hionsuck [3 ]
Choi, Sang-Il [4 ,5 ]
Lee, Kwangyeol [1 ,2 ]
机构
[1] Korea Univ, Dept Chem, Seoul 02841, South Korea
[2] Inst for Basic Sci Korea, Ctr Mol Spect & Dynam, Seoul 02841, South Korea
[3] KBSI, Seoul 02841, South Korea
[4] Kyungpook Natl Univ, Dept Chem, Daegu 41566, South Korea
[5] Kyungpook Natl Univ, Green Nano Mat Res Ctr, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
oxygen evolution reaction; electrocatalyst; nickel oxyhydroxide; heteroepitaxy; phase transformation; EFFICIENT WATER OXIDATION; FUTURE PERSPECTIVES; PHASE SEGREGATION; 1ST PRINCIPLES; CATALYSTS; OXIDE; HYDROXIDE; NI; OXYHYDROXIDE; NANOFRAME;
D O I
10.1021/acsami.7b19457
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A layered beta-NiOOH crystal with undercoordinated facets is an active and economically viable nonnoble catalyst for the oxygen evolution reaction (OER) in alkaline electrolytes. However, it is extremely difficult to enclose the beta-NiOOH crystal with undercoordinated facets because of its inevitable crystal transformation to gamma-NiOOH, resulting in the exfoliation of the catalytic surfaces. Herein, we demonstrate {111}-faceted Ni octahedra as the parent substrates whose surfaces are easily transformed to catalytically active beta-NiOOH during the alkaline OER. Electron microscopic measurements 1.2 demonstrate that the horizontally stacked beta-NiOOH on the surfaces of Ni octahedra has resistance to further oxidation to gamma-NiOOH. By contrast, significant crystal transformation and thus the exfoliation of the gamma-NiOOH sheets can be observed on the surfaces of Ni cubes and rhombic dodecahedra (RDs). Electrocatalytic measurements show that the beta-NiOOH formed on Ni octahedra exhibits highly enhanced OER durability compared to the Ni cubes, Ni RDs, and the state-of-the-art Ir/C catalysts.
引用
收藏
页码:10115 / 10122
页数:8
相关论文
共 50 条
  • [41] Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction
    Liu, Yihao
    Ran, Nian
    Ge, Riyue
    Liu, Jianjun
    Li, Wenxian
    Chen, Yingying
    Feng, Lingyan
    Che, Renchao
    CHEMICAL ENGINEERING JOURNAL, 2021, 425
  • [42] Highly Active Ni-Fe Based Oxide Oxygen Evolution Reaction Electrocatalysts for Alkaline Anion Exchange Membrane Electrolyser
    Vincent, Immanuel
    Lee, Eun-Chong
    Kim, Hyung-Man
    CATALYSTS, 2022, 12 (05)
  • [43] Amorphous FeNiCu-MOFs as highly efficient electrocatalysts for the oxygen evolution reaction in an alkaline medium
    Wu, Hao
    Zhai, Qingxi
    Ding, Fan
    Sun, Dongyue
    Ma, Yujie
    Ren, Yilun
    Wang, Biao
    Li, Fengqi
    Bian, Haifeng
    Yang, Yurong
    Chen, Lan
    Tang, Shaochun
    Meng, Xiangkang
    DALTON TRANSACTIONS, 2022, 51 (37) : 14306 - 14316
  • [44] Highly Active Trimetallic NiFeCr Layered Double Hydroxide Electrocatalysts for Oxygen Evolution Reaction
    Yang, Yang
    Dang, Lianna
    Shearer, Melinda J.
    Sheng, Hongyuan
    Li, Wenjie
    Chen, Jie
    Xiao, Peng
    Zhang, Yunhuai
    Hamers, Robert J.
    Jin, Song
    ADVANCED ENERGY MATERIALS, 2018, 8 (15)
  • [45] Synthesis of graphene/Ru/NiO composites as highly active oxygen evolution reaction electrocatalysts
    Ji, Qizhe
    Li, Luyan
    Song, Yang
    Li, Changming
    Zeng, Xi
    Yang, Zhenghua
    Zhang, Sen
    Zhao, Xianglong
    Chen, Feiyong
    MATERIALS LETTERS, 2024, 363
  • [46] Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater
    Chen, Zhibin
    Huang, Kang
    Zhang, Bowei
    Xia, Jiuyang
    Wu, Junsheng
    Zhang, Zequn
    Huang, Yizhong
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2023, 30 (10) : 1922 - 1932
  • [47] Monitoring oxygen-vacancy ratio in NiFe-based electrocatalysts during oxygen evolution reaction in alkaline electrolyte
    Kim, Hyunki
    Kim, Junhyeong
    Ahn, Sang Hyun
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 72 : 273 - 280
  • [48] Bimetallic 3D Nickel-Manganese/Titanium Bifunctional Electrocatalysts for Efficient Hydrogen and Oxygen Evolution Reaction in Alkaline and Acidic Media
    Barua, Sukomol
    Balciunaite, Aldona
    Vaiicuniene, Jurate
    Tamasauskaite-Tamasiunaite, Loreta
    Norkus, Eugenijus
    COATINGS, 2023, 13 (06)
  • [49] Iron Doped in the Subsurface of CuS Nanosheets by Interionic Redox: Highly Efficient Electrocatalysts toward the Oxygen Evolution Reaction
    Chen, Jing
    Gu, Mingzheng
    Liu, Shoujie
    Sheng, Tian
    Zhang, Xiaojun
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (14) : 16210 - 16217
  • [50] Corrosion of monometallic iron- and nickel-based electrocatalysts for the alkaline oxygen evolution reaction: A review
    Liang, Hongxing
    Xu, Min
    Asselin, Edouard
    JOURNAL OF POWER SOURCES, 2021, 510 (510)