Comonotone approximation and interpolation by entire functions

被引:0
作者
Burke, Maxim R. [1 ]
机构
[1] Univ Prince Edward Isl, Sch Math & Computat Sci, Charlottetown, PE C1A 4P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Piecewise monotone; Co-monotone approximation; Approximation by entire functions; Interpolation; Walsh lemma; Hoischen theorem;
D O I
10.1016/j.jmaa.2019.123427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A theorem of Hoischen states that given a positive continuous function epsilon : R -> R, an integer n >= 0, and a closed discrete set E subset of R, any Cn function f : R -> R can be approximated by an entire function g so that for k = 0, . . . , n, and x is an element of R, vertical bar D-k g(x)-D-k f(x)vertical bar, and if x is an element of E then D-k g(x) = D-k f (x). The approximating function g is entire and hence piecewise monotone. We determine conditions under which when f is piecewise monotone we can choose g to be comonotone with f (increasing and decreasing on the same intervals), and under which the derivatives of g can be taken to be comonotone with the corresponding derivatives of f if the latter are piecewise monotone. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:41
相关论文
共 50 条
[41]   ON THE ISSUE OF INTERPOLATION APPROXIMATION POLYNOMIAL CONSTRUCTION [J].
Lukyanov, V. D. .
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2012, 3 (06) :5-+
[42]   Approximation capability of interpolation neural networks [J].
Cao, Feilong ;
Lin, Shaobo ;
Xu, Zongben .
NEUROCOMPUTING, 2010, 74 (1-3) :457-460
[43]   Simultaneous approximation and interpolation from lattices [J].
Kashimoto, Marcia S. .
NOTE DI MATEMATICA, 2008, 28 (01) :163-166
[44]   Entire functions with values in a number field [J].
Ably, Mohammed .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2011, 139 (02) :243-270
[45]   BASIS IN AN INVARIANT SPACE OF ENTIRE FUNCTIONS [J].
Krivosheev, A. S. ;
Krivosheeva, O. A. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (02) :273-316
[46]   Interpolation problems for holomorphic functions [J].
Hsu, Ming-Hsiu ;
Wang, Lih-Chung ;
He, Zhen .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 452 :270-280
[47]   INTERPOLATION WITH MEROMORPHIC MATRIX FUNCTIONS [J].
BALL, JA ;
CLANCEY, KF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (02) :491-496
[48]   REMARKS ON INTERPOLATION OF FUNCTIONS BY POLYNOMIALS [J].
Czekalski, Stefan .
DEMONSTRATIO MATHEMATICA, 2016, 49 (04) :421-429
[49]   Interpolation on lines by ridge functions [J].
Ismailov, V. E. ;
Pinkus, A. .
JOURNAL OF APPROXIMATION THEORY, 2013, 175 :91-113
[50]   TEST FUNCTIONS IN CONSTRAINED INTERPOLATION [J].
Dritschel, Michael A. ;
Pickering, James .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (11) :5589-5604