The vanishing viscosity limit for some symmetric flows

被引:8
作者
Gie, Gung-Min [1 ]
Kelliher, James P. [2 ]
Lopes Filho, Milton C. [3 ]
Mazzucato, Anna L. [4 ]
Nussenzveig Lopes, Helena J. [3 ]
机构
[1] Univ Louisville, Dept Math, 328 Nat Sci Bldg, Louisville, KY 40292 USA
[2] Univ Calif Riverside, Dept Math, 900 Univ Ave, Riverside, CA 92521 USA
[3] Univ Fed Rio de Janeiro, Inst Matemat, Caixa Postal 68530, BR-21941909 Rio De Janeiro, RJ, Brazil
[4] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2019年 / 36卷 / 05期
基金
美国国家科学基金会;
关键词
Boundary layers; Singular perturbations; Navier-Stokes equations; Euler equations; Inviscid limit; NAVIER-STOKES EQUATIONS; BOUNDARY-LAYER; EULER EQUATIONS; INVISCID LIMIT; WELL-POSEDNESS; SPECTRAL INSTABILITY; ANALYTIC SOLUTIONS; ILL-POSEDNESS; CHANNEL FLOW; PRANDTL;
D O I
10.1016/j.anihpc.2018.11.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The focus of this paper is on the analysis of the boundary layer and the associated vanishing viscosity limit for two classes of flows with symmetry, namely, Plane-Parallel Channel Flows and Parallel Pipe Flows. We construct explicit boundary layer correctors, which approximate the difference between the Navier-Stokes and the Euler solutions. Using properties of these correctors, we establish convergence of the Navier-Stokes solution to the Euler solution as viscosity vanishes with optimal rates of convergence. In addition, we investigate vorticity production on the boundary in the limit of vanishing viscosity. Our work significantly extends prior work in the literature. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1237 / 1280
页数:44
相关论文
共 88 条
  • [1] [Anonymous], 1988, Chicago Lectures in Mathematics
  • [2] [Anonymous], 1963, COMP MATH MATH PHYS+
  • [3] [Anonymous], 1968, INTRO FLUID DYNAMICS, DOI DOI 10.1016/0017-9310(68)90038-0
  • [4] [Anonymous], 1996, OXFORD LECT SERIES M
  • [5] [Anonymous], 1973, LECT NOTES MATH
  • [6] A NOTE ON THE ABSTRACT CAUCHY-KOWALEWSKI THEOREM
    ASANO, K
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1988, 64 (04) : 102 - 105
  • [7] EXISTENCE AND UNIQUENESS OF SOLUTION TO BIDIMENSIONAL EULER EQUATION
    BARDOS, C
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 40 (03) : 769 - 790
  • [8] Non-uniqueness for the Euler equations: the effect of the boundary
    Bardos, C.
    Szekelyhidi, L., Jr.
    Wiedemann, E.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2014, 69 (02) : 189 - 207
  • [9] STABILITY OF TWO-DIMENSIONAL VISCOUS INCOMPRESSIBLE FLOWS UNDER THREE-DIMENSIONAL PERTURBATIONS AND INVISCID SYMMETRY BREAKING
    Bardos, C.
    Lopes Filho, M. C.
    Niu, Dongjuan
    Nussenzveig Lopes, H. J.
    Titi, E. S.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) : 1871 - 1885
  • [10] Bardos C., 2018, ARXIV E PRINTS