Improving Supervised Classification Using Information Extraction

被引:1
|
作者
Du, Mian [1 ]
Pierce, Matthew [1 ]
Pivovarova, Lidia [1 ]
Yangarber, Roman [1 ]
机构
[1] Univ Helsinki, Dept Comp Sci, SF-00510 Helsinki, Finland
关键词
EVENT EXTRACTION; TEXT;
D O I
10.1007/978-3-319-19581-0_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We explore supervised learning for multi-class, multi-label text classification, focusing on real-world settings, where the distribution of labels changes dynamically over time. We use the PULS Information Extraction system to collect information about the distribution of class labels over named entities found in text. We then combine a knowledge-based rote classifier with statistical classifiers to obtain better performance than either classification method alone. The resulting classifier yields a significant improvement in macro-averaged F-measure compared to the state of the art, while maintaining comparable microaverage.
引用
收藏
页码:3 / 18
页数:16
相关论文
共 50 条
  • [41] Improving Information Extraction from Wikipedia Texts using Basic English
    Rodriguez-Ferreira, Teresa
    Rabadan, Adrian
    Hervas, Raquel
    Diaz, Alberto
    LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2016, : 395 - 400
  • [42] Improving information retrieval using document clusters and semantic synonym extraction
    Bharathi, G.
    Venkatesan, D.
    Journal of Theoretical and Applied Information Technology, 2012, 36 (02): : 167 - 173
  • [43] A Novel Approach of Feature Vector Design for Financial Information Extraction Using Supervised Learning
    Dadhich, Mahesh
    Lewis, James G.
    2016 3RD INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE (ISCMI 2016), 2016, : 115 - 119
  • [44] Using Temporal Information for Improving Articulatory-Acoustic Feature Classification
    Schuppler, Barbara
    van Doremalen, Joost
    Scharenborg, Odette
    Cranen, Bert
    Boves, Lou
    2009 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION & UNDERSTANDING (ASRU 2009), 2009, : 70 - 75
  • [45] Improving Short Text Classification using Information from DBpedia Ontology
    Flisar, Jernej
    Podgorelec, Vili
    FUNDAMENTA INFORMATICAE, 2020, 172 (03) : 261 - 297
  • [46] Improving urban classification through fuzzy supervised classification and spectral mixture analysis
    Tang, J.
    Wang, L.
    Myint, S. W.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (18) : 4047 - 4063
  • [47] ASIC: Supervised multi-class classification using adaptive selection of information components
    Xie, Zongxing
    Quirino, Thiago
    Shyu, Mei-Ling
    Chen, Shu-Ching
    ICSC 2007: INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, PROCEEDINGS, 2007, : 527 - +
  • [48] Reliable Target Feature Extraction and Classification using Potential Target Information
    Doo, Seung Ho
    Smith, Graeme
    Baker, Chris
    2015 IEEE INTERNATIONAL RADAR CONFERENCE (RADARCON), 2015, : 628 - 633
  • [49] Linear Discriminant Feature Extraction Using Weighted Classification Confusion Information
    Lee, Hung-Shin
    Chen, Berlin
    INTERSPEECH 2008: 9TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2008, VOLS 1-5, 2008, : 2254 - 2257
  • [50] Semi-supervised multi-label classification using incomplete label information
    Tan, Qiaoyu
    Yu, Yanming
    Yu, Guoxian
    Wang, Jun
    NEUROCOMPUTING, 2017, 260 : 192 - 202